• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法

李骞 王桂霞 王一辰

李骞, 王桂霞, 王一辰. 阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法[J]. 应用数学和力学, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263
引用本文: 李骞, 王桂霞, 王一辰. 阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法[J]. 应用数学和力学, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263
LI Qian, WANG Guixia, WANG Yichen. A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263
Citation: LI Qian, WANG Guixia, WANG Yichen. A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263

阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法

doi: 10.21656/1000-0887.450263
基金项目: 

国家自然科学基金(62161045)

内蒙古自治区自然科学基金(2023LHMS01007;2022JBQN074)

内蒙古自治区自然科学基金重点项目(2022ZD05)

详细信息
    作者简介:

    李骞(2000—), 女, 硕士生(E-mail: 3491240780@qq.com);王桂霞(1968—), 女, 教授, 博士(通讯作者. E-mail: nsdwgx@126.com).

    通讯作者:

    王桂霞(1968—), 女, 教授, 博士(通讯作者. E-mail: nsdwgx@126.com).

  • 中图分类号: O241.82

A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations

Funds: 

The National Science Foundation of China(62161045)

  • 摘要: 基于Hamilton共形广义多辛理论,研究一类阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱格式的保结构算法.首先,通过引入中间变量,将方程转化为满足局部守恒的共形广义多辛Hamilton系统,并利用Strang分裂方法,将其分裂为守恒子系统和耗散子系统.进一步,空间上利用Fourier拟谱方法,时间上利用隐中点方法,对该系统进行离散,得到共形广义多辛Fourier拟谱格式,在周期边界条件下,该格式满足全局共形质量守恒律和动量守恒律.数值实例表明该算法是有效的,能够保持系统质量和动量衰减特性.
  • 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003.(FENG Kang, QIN Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2003. (in Chinese))
    [2]秦孟兆, 王雨顺. 偏微分方程中的保结构算法[M]. 杭州: 浙江科学技术出版社, 2011. (QIN Mengzhao, WANG Yushun. Structure-Preserving Algorithm for Partial Differential Equation[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2011. (in Chinese))
    [3]HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations[M]. 2nd ed. Berlin Heidlberg: Springer, 2006.
    [4] MCLACHLAN R I, QUISPEL G R W. Splittingmethods[J]. Acta Numerica,2002,11: 341-434.
    [5]王雨顺, 秦孟兆. 变分与无限维系统的高精度辛格式[J]. 计算数学, 2002,24(4): 431-436.(WANG Yushun, QIN Mengzhao. Variation and high order accuracy symplectic scheme for infinite dimensional system[J]. Mathematica Numerica Sinica,2002,24(4): 431-436. (in Chinese))
    [6] TANG Y F, VZQUEZ L, ZHANG F, et al.Symplectic methods for the nonlinear Schrdinger equation[J]. Computers & Mathematics With Applications,1996,32(5): 73-83.
    [7] SHANG Z J. KAM theorem of symplectic algorithms for Hamiltoniansystems[J]. Numerische Mathematik,1999,83(3): 477-496.
    [8] BRIDGES T J, REICH S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conservesymplecticity[J]. Physics Letters A,2001,284(4/5): 184-193.
    [9] BRIDGES T J. Multi-symplectic structures and wavepropagation[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1997,121(1): 147-190.
    [10]MARSDEN J E, PATRICK G W, SHKOLLER S. Multisymplectic geometry, variational integrators, and nonlinear PDEs[J]. Communications in Mathematical Physics,1998,199(2): 351-395.
    [11]MARSDEN J E, PEKARSKY S, SHKOLLER S, et al. Variational methods,multisymplectic geometry and continuum mechanics[J]. Journal of Geometry and Physics,2001,38(3/4): 253-284.
    [12]王雨顺, 王斌, 秦孟兆. 2+1维sine-Gordon方程多辛格式的复合构造[J]. 中国科学(A辑), 2003,33(3): 272-281.(WANG Yushun, WANG Bin, QIN Mengzhao. Composite construction of multi-symplectic scheme for 2+1 dimensional sine-Gordon equation[J]. Science in China (Serises A),2003,33(3): 272-281. (in Chinese))
    [13]王雨顺, 王斌, 季仲贞. 孤立波方程的保结构算法[J]. 计算物理, 2004,21(5): 386-400.(WANG Yushun, WANG Bin, JI Zhongzhen. Structure preserving algorithms for soliton equations[J]. Chinese Journal of Computation Physics,2004,21(5): 386-400. (in Chinese))
    [14]王雨顺, 王斌, 秦孟兆. 偏微分方程的局部保结构算法[J]. 中国科学(A辑): 数学, 2008,38(4): 377-397.(WANG Yushun, WANG Bin, QIN Mengzhao. Local structure-preserving algorithm for partial differential equations[J]. Science in China (Series A): Mathematics,2008,38(4): 377-397. (in Chinese))
    [15]SUN Y J, QIN M Z. A multi-symplectic scheme for RLW equation[J]. Journal of Computational Mathematics,2004,22(4): 611-621.
    [16]胡伟鹏, 邓子辰. 无限维动力学系统的保结构分析方法[M]. 西安: 西北工业大学出版社, 2015. (HU Weipeng, 〖JP2〗DENG Zichen. Structure-Preserving Analysis Method for Infinite Dimensional Dynamic Systems[M]. 〖JP〗Xi’an: Northwestern Polytechnical University Press, 2015. (in Chinese))
    [17]胡伟鹏, 邓子辰, 李文成. KdV方程的多辛算法及其孤子解的数值模拟[J]. 西北工业大学学报, 2008,26(1): 128-131.(HU Weipeng, DENG Zichen, LI Wencheng. Multi-symplectic algorithm and simulation of soliton for KdV equation[J]. Journal of Northwestern Polytechnical University,2008,26(1): 128-131. (in Chinese))
    [18]何啸, 贾村, 孟静, 等. 内孤立波过陆架陆坡地形的数值模拟研究[J]. 海洋科学, 2023,47(3): 1-14.(HE Xiao, JIA Cun, MENG Jing, et al. Numerical investigation of the evolution of internal solitary waves over shelf-slope topography[J]. Marine Sciences,2023,47(3): 1-14. (in Chinese))
    [19]郭峰, 吴凤珍. MKdV方程的多辛格式[J]. 河南师范大学学报(自然科学版), 2005,33(1): 128-129.(GUO Feng, WU Fengzhen. Multi-symplectic scheme for MKdV equation[J]. Journal of Henan Normal University (Natural Science Edition), 2005,33(1): 128-129. (in Chinese))
    [20]胡伟鹏, 邓子辰, 李文成. 广义KdV-mKdV方程的多辛算法及孤波解数值模拟[J]. 西北工业大学学报, 2008,26(4): 450-453.(HU Weipeng, DENG Zichen, LI Wencheng. Multi-symplectic scheme and simulation of solitary wave solution for generalized KdV-mKdV equation[J]. Journal of Northwestern Polytechnical University,2008,26(4): 450-453. (in Chinese))
    [21]王晨逦, 王桂霞, 萨和雅. EKdV方程的高阶多辛保结构算法及孤立波解的数值模拟[J]. 内蒙古师范大学学报(自然科学汉文版), 2023,52(2): 119-126.(WANG Chenli, WANG Guixia, SA Heya. High order multisymplectic structure-preserving algorithm and numerical simulation of solitary wave solutions for EKdV equation[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2023,52(2): 119-126. (in Chinese))
    [22]HELFRICH K R, MELVILLE W K. On long nonlinear internal waves over slope-shelf topography[J]. Journal of Fluid Mechanics,1986,167: 285.
    [23]MCLACHLAN R, PERLMUTTER M. Conformal Hamiltonian systems[J]. Journal of Geometry and Physics,2001,39(4): 276-300.
    [24]BHATT A, FLOYD D, MOORE B E. Second order conformal symplectic schemes for damped Hamiltonian systems[J]. Journal of Scientific Computing,2016,66(3): 1234-1259.
    [25]MOORE B E. Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations[J]. Mathematics and Computers in Simulation,2009,80(1): 20-28.
    [26]MOORE B E, NOREA L, SCHOBER C M. Conformal conservation laws and geometric integration for damped Hamiltonian PDEs[J]. Journal of Computational Physics,2013,232(1): 214-233.
    [27]MOORE B E. Multi-conformal-symplectic PDEs and discretizations[J]. Journal of Computational and Applied Mathematics,2017,323: 1-15.
    [28]汪佳玲. 几个偏微分方程的保结构算法构造及误差分析[D]. 南京: 南京师范大学, 2017.(WANG Jialing. Construction and analysis of the structure-preserving algorithms for the Hamiltonian partial differential equations[D]. Nanjing: Nanjing Normal University, 2017. (in Chinese))
    [29]郑家栋, 张汝芬, 郭本瑜. SRLW方程的Fourier拟谱方法[J]. 应用数学和力学, 1989,10(9): 801-810.(ZHENG Jiadong, ZHANG Rufen, GUO Benyu. The Fourier pseudo-spectral method for the SRLW equation[J]. Applied Mathematics and Mechanics,1989,10(9): 801-810. (in Chinese))
    [30]邓镇国, 马和平. 广义KdV方程Fourier谱逼近的最优误差估计[J]. 应用数学和力学, 2009,30(1): 30-39.(DENG Zhenguo, MA Heping. Optimal error estimates for Fourier spectral approxiation of the generalized KdV equation[J]. Applied Mathematics and Mechanics,2009,30(1): 30-39. (in Chinese))
    [31]HU D D, CAI W J , XU Z Z, et al. Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine-Gordon equation with damping[J]. Mathematics and Computers in Simulation,2021,188: 35-59.
    [32]HE Y, ZHAO X F. Numerical methods for some nonlinear Schrdinger equations in soliton management[J]. Journal of Scientific Computing,2023,95(2): 61.
    [33]许壮志. 空间分数阶非线性Schrdinger方程保结构算法[D]. 南京: 南京师范大学, 2021.(XU Zhuangzhi. Structure-preserving algorithms for the space fractional nonlinear Schrdinger equation[D]. Nanjing: Nanjing Normal University, 2021. (in Chinese))
    [34]蔡树群. 内孤立波数值模式及其在南海区域的应用[M]. 北京: 海洋出版社, 2015.(CAI Shuqun. Numerical Model of Internal Solitary Waves and Its Application in South China Sea Region[M]. Beijing: Ocean Press, 2015. (in Chinese))
    [35]方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005.(FANG Xinhua, DU Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao: China Ocean University Press, 2005. (in Chinese))
    [36]张善武. 基于变系数KdV-type理论模型的南海北部内孤立波传播演变过程研究[D]. 青岛: 中国海洋大学, 2014.(ZHANG Shanwu. Investigation of the propagation and evolution processes of internal solitary waves in the Northern South China Sea based on the variable-coefficients KdV-type theoretical models[D]. Qingdao: Ocean University of China, 2014. (in Chinese))
    [37]傅浩. 共形Hamilton系统的若干保结构算法研究[D]. 长沙: 国防科技大学, 2018.(FU Hao. Some structure-preserving algorithms for conformal Hamiltonian system[D]. Changsha: National University of Defense Technology, 2018. (in Chinese))
    [38]宋松和, 陈亚铭, 朱华君. KdV方程的多辛Fourier拟谱格式及其孤立波解的数值模拟[J]. 安徽大学学报(自然科学版), 2010,34(4): 1-7.(SONG Songhe, CHEN Yaming, ZHU Huajun. Multi-symplectic Fourier pseudospectral scheme and simulation of soliton solutions for the KdV equation[J]. Journal of Anhui University (Natural Sciences Edition), 2010,34(4): 1-7. (in Chinese))
    [39]向新民. 谱方法的数值分析[M]. 北京: 科学出版社, 2000. (XIANG Xinmin. Numerical Analysis of Spectral Method[M]. Beijing: Science Press, 2000. (in Chinese))
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-12-24
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回