• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多智能体系统动态事件触发固定时间二分一致

周礼庆 赵华荣 彭力

周礼庆, 赵华荣, 彭力. 多智能体系统动态事件触发固定时间二分一致[J]. 应用数学和力学, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269
引用本文: 周礼庆, 赵华荣, 彭力. 多智能体系统动态事件触发固定时间二分一致[J]. 应用数学和力学, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269
ZHOU Liqing, ZHAO Huarong, PENG Li. Fixed-Time Bipartite Consensus of Multi-Agent Systems With the Dynamic Event-Triggered Scheme[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269
Citation: ZHOU Liqing, ZHAO Huarong, PENG Li. Fixed-Time Bipartite Consensus of Multi-Agent Systems With the Dynamic Event-Triggered Scheme[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1440-1451. doi: 10.21656/1000-0887.450269

多智能体系统动态事件触发固定时间二分一致

doi: 10.21656/1000-0887.450269
基金项目: 

国家自然科学基金 62403216

国家自然科学基金 61873112

中央高校基本科研业务费 JUSRP123061

详细信息
    作者简介:

    周礼庆(1994—),男,硕士(E-mail: 17864231206@163.com)

    彭力(1967—),男,教授,博士,博士生导师(E-mail: penglimail2002@163.com)

    通讯作者:

    赵华荣(1991—),男,讲师,博士(通讯作者. E-mail: hrzhao@jiangnan.edu.cn)

  • 中图分类号: TP13; O231

Fixed-Time Bipartite Consensus of Multi-Agent Systems With the Dynamic Event-Triggered Scheme

  • 摘要: 针对多智能体系统的通讯受限问题,研究了一种基于采样数据的固定时间动态事件触发二分一致性算法. 首先,设计了一种周期采样机制,以降低系统的通讯频率. 针对采样数据设计了一种基于辅助变量的动态事件触发控制算法,以进一步减小系统触发次数. 其次,为提高动态事件触发控制算法的收敛速度,研究了一种动态事件触发固定时间二分一致控制算法. 最后,利用Lyapunov稳定性理论、代数图论以及相关不等式,对所提控制协议稳定性进行了严格的理论证明,并通过仿真实验验证了算法的有效性.
  • 图  1  基于采样数据的动态事件触发固定时间控制框图

    Figure  1.  Diagram of the sampled-data-based dynamic event-triggered fixed-time control

    图  2  系统通信拓扑图

    Figure  2.  The communication topology of the system

    图  3  基于采样数据的事件触发固定时间一致

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The sampled-data-based event-triggered fixed-time consensus

    图  4  不同采样周期对系统的影响

    Figure  4.  The impact of different sampling periods on the system

    图  5  本文算法与文献[21]算法对比

    Figure  5.  Comparison between the algorithm in this paper and the algorithm in ref. [21]

    图  6  类独轮车非完整机器人系统

    Figure  6.  The system of unicycle-like nonholonomic robots

    图  7  系统输出与触发间隔

    Figure  7.  The output and event-triggered instants of the system

  • [1] XIE X, SHENG T, CHEN X. Self-triggered formation control for multi-spacecraft attitude coordination with communication delays[J]. Journal of the Franklin Institute, 2023, 360(18): 14696-14711. doi: 10.1016/j.jfranklin.2023.11.021
    [2] SONG Z, WANG X, WEI B, et al. Distributed finite-time cooperative economic dispatch strategy for smart grid under DOS attack[J]. Mathematics, 2023, 11(9): 2103. doi: 10.3390/math11092103
    [3] WANG J, LUO X, LI M, et al. Distributed nonsingular terminal sliding mode control-based RBFNN for heterogeneous vehicular platoons with input saturation[J]. Transactions of the Institute of Measurement and Control, 2024, 46(9): 1742-1754. doi: 10.1177/01423312231197848
    [4] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533. doi: 10.1109/TAC.2004.834113
    [5] 王兴平, 宋艳荣, 程兆林. 切换网络下时变线性多智能体系统的指数同步[J]. 自动化学报, 2015, 41(8): 1528-1532.

    WANG Xingping, SONG Yanrong, CHENG Zhaolin. Exponential synchronization of time-varying linear multi-agent systems with switching topology[J]. Acta Automatica Sinica, 2015, 41(8): 1528-1532. (in Chinese)
    [6] LI G, WANG X, LI S. Finite-time consensus algorithms of leader-follower higher-order multi-agent systems with uncertain nonlinearities[J]. Journal of the Franklin Institute, 2020, 357(16): 11939-11952. doi: 10.1016/j.jfranklin.2019.12.044
    [7] 刘凡, 杨洪勇, 杨怡泽, 等. 带有不匹配干扰的多智能体系统有限时间积分滑模控制[J]. 自动化学报, 2019, 45(4): 749-758.

    LIU Fan, YANG Hongyong, YANG Yize, et al. Finite-time integral sliding-mode control for multi-agent systems with mismatched disturbances[J]. Acta Automatica Sinica, 2019, 45(4): 749-758. (in Chinese)
    [8] ZUO Z, HAN Q L, NING B, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2322-2334. doi: 10.1109/TII.2018.2817248
    [9] NING B, HAN Q L, ZUO Z, et al. Fixed-time and prescribed-time consensus control of multiagent systems and its applications: a survey of recent trends and methodologies[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1121-1135. doi: 10.1109/TII.2022.3201589
    [10] 赵玮, 任凤丽. 基于牵制控制的多智能体系统的有限时间与固定时间一致性[J]. 应用数学和力学, 2021, 42(3): 299-307. doi: 10.21656/1000-0887.410190

    ZHAO Wei, REN Fengli. Finite-time and fixed-time consensus for multi-agent systems via pinning control[J]. Applied Mathematics and Mechanics, 2021, 42(3): 299-307. (in Chinese) doi: 10.21656/1000-0887.410190
    [11] 陈世明, 黎力超. 非线性随机多智能体系统的固定时间一致性[J]. 控制理论与应用, 2021, 38(4): 540-546.

    CHEN Shiming, LI Lichao. Fixed-time consensus of nonlinear stochastic multi-agent systems[J]. Control Theory and Applications, 2021, 38(4): 540-546. (in Chinese)
    [12] ALTAFINI C. Consensus problems on networks with antagonistic interactions[J]. IEEE Transactions on Automatic Control, 2013, 58(4): 935-946. doi: 10.1109/TAC.2012.2224251
    [13] XU Z, LIU X, CAO J, et al. Fixed-time bipartite consensus of nonlinear multi-agent systems under directed signed graphs with disturbances[J]. Journal of the Franklin Institute, 2022, 359(6): 2693-2709. doi: 10.1016/j.jfranklin.2022.02.023
    [14] 纪良浩, 李海, 李华青. 虚假数据注入攻击下多智能体系统的均方二分一致性研究[J]. 控制与决策, 2023, 38(12): 3363-3371.

    JI Lianghao, LI Hai, LI Huaqing. Mean square bipartite consensus for multi-agent systems under false data injection attacks[J]. Control and Decision, 2023, 38(12): 3363-3371. (in Chinese)
    [15] XIONG L, CHEN K, CAO J, et al. A novel adaptive event-triggered security consensus control mechanism for leader-following multi-agent systems under hybrid random cyber attacks[J]. International Journal of Robust and Nonlinear Control, 2024, 34(15): 10571-10588. doi: 10.1002/rnc.7533
    [16] ZHAO H, SHAN J, PENG L, et al. Adaptive event-triggered bipartite formation for multiagent systems via reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 17817-17828.
    [17] 李振涛, 冯元珍, 王正新. 事件触发下多智能体系统固定时间二分一致性[J]. 计算机工程与应用, 2021, 57(21): 80-86.

    LI Zhengtao, FENG Yuanzhen, WANG Zhengxin. Fixed-time bipartite consensus of multi-agent systems via event-triggered control[J]. Computer Engineering and Applications, 2021, 57(21): 80-86. (in Chinese)
    [18] JIANG A H, ZHAN X S, HAN T, et al. Bipartite fixed-time consensus of multi-agents system with disturbancevia event-triggered control[J]. International Journal of Control, Automation and Systems, 2022, 20(7): 2249-2259.
    [19] 赵华荣, 彭力, 吴治海, 等. 随机时延下多输入多输出多智能体系统事件触发双向编队[J]. 控制与决策, 2024, 39(4): 1251-1259.

    ZHAO Huarong, PENG Li, WU Zhihai, et al. Event-triggered bipartite formation for multi-input multi-output multiagent systems with random delays[J]. Control and Decision, 2024, 39(4): 1251-1259. (in Chinese)
    [20] LIU J, RAN G, WU Y, et al. Dynamic event-triggered practical fixed-time consensus for nonlinear multiagent systems[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2022, 69(4): 2156-2160. doi: 10.1109/TCSII.2021.3128624
    [21] DU X, QU S, ZHANG H, et al. Distributed bipartite consensus for multi-agent systems with dynamic event-triggered mechanism[J]. Journal of the Franklin Institute, 2023, 360(12): 8877-8897. doi: 10.1016/j.jfranklin.2022.05.022
    [22] LIU H, WANG Z. Sampled-data-based consensus of multi-agent systems under asynchronous denial-of-service attacks[J]. Nonlinear Analysis: Hybrid Systems, 2021, 39: 100969. doi: 10.1016/j.nahs.2020.100969
    [23] 郑丽颖, 杨永清, 许先云. 基于时变拓扑结构的二阶多智能体系统采样一致性[J]. 应用数学和力学, 2022, 43(7): 783-791. doi: 10.21656/1000-0887.420220

    ZHENG Liying, YANG Yongqing, XU Xianyun. Sampling consensus of 2nd-order multi-agent systems based on time-varying topology[J]. Applied Mathematics and Mechanics, 2022, 43(7): 783-791. (in Chinese) doi: 10.21656/1000-0887.420220
    [24] PENG C, ZHANG J, HAN Q. Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(3): 589-599. doi: 10.1109/TSMC.2018.2814572
    [25] YAO Y, LUO Y, CAO J. Finite-time guarantee-cost H consensus control of second-order multi-agent systems based on sampled-data event-triggered mechanisms[J]. Neural Networks, 2024, 174: 106261. doi: 10.1016/j.neunet.2024.106261
    [26] YIN K, YANG D. Sampled-data-based dynamic event-triggered asynchronous control of continuous-time positive Markov jump systems[J]. Chaos, Solitons & Fractals, 2023, 169: 113254.
    [27] PARSEGOV E, POLYAKOV E, SHCHERBAKOV S. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment[J]. Doklady Mathematics, 2013, 87(1): 133-136.
    [28] CHEN X, YU H, HAO F. Prescribed-time event-triggered bipartite consensus of multiagent systems[J]. IEEE Transactions on Cybernetics, 2020, 52(4): 2589-2598.
  • 加载中
图(7)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  15
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-02-07
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回