• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计

郭伟超 杜亮 许栋 贺钊锐 高新勤

郭伟超, 杜亮, 许栋, 贺钊锐, 高新勤. 考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计[J]. 应用数学和力学, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276
引用本文: 郭伟超, 杜亮, 许栋, 贺钊锐, 高新勤. 考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计[J]. 应用数学和力学, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276
GUO Weichao, DU Liang, XU Dong, HE Zhaorui, GAO Xinqin. Optimal Design of Battery Pack Heat Dissipation Topology Considering the Zonal Maximum Temperature Under Transient Effects[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276
Citation: GUO Weichao, DU Liang, XU Dong, HE Zhaorui, GAO Xinqin. Optimal Design of Battery Pack Heat Dissipation Topology Considering the Zonal Maximum Temperature Under Transient Effects[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276

考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计

doi: 10.21656/1000-0887.450276
详细信息
    作者简介:

    郭伟超(1981—),男,副教授,博士,硕士生导师(通讯作者. E-mail: Weichaoguo@xaut.edu.cn).

    通讯作者:

    郭伟超(1981—),男,副教授,博士,硕士生导师(通讯作者. E-mail: Weichaoguo@xaut.edu.cn).

  • 中图分类号: O342|U463.68

Optimal Design of Battery Pack Heat Dissipation Topology Considering the Zonal Maximum Temperature Under Transient Effects

  • 摘要: 电池包的散热程度是影响其稳定性、能效和续航里程等性能的关键因素,也是新能源汽车电池性能的瓶颈之一.针对电池包的最高温度过大导致结构失效的问题,在考虑瞬态效应的影响的条件下,提出了一种能够表示结构特定区域最高温度的方法——区域温度控制函数,并把区域最高温度作为优化目标建立了对应的拓扑优化模型,从而实现了电池在工作时间、结构特定区域的最高温度的最小化设计.通过伴随变量法推导了目标函数关于设计变量的敏度解析表达式,从而使设计的电池包结构更合理,满足电池包的热控制需求.最后,通过具体电池散热片的优化、分析,表明该方法可以有效提高电池包的散热效率,降低特定区域的最高温度,减少温度不均匀性,在新能源汽车领域具有广阔的应用前景.
  • 齐创, 朱艳丽, 高飞, 等. 过充电条件下锂离子电池热失控数值模拟[J]. 北京理工大学学报, 2017,37(10): 1048-1055.

    (QI Chuang, ZHU Yanli, GAO Fei, et al. Thermal runaway analysis of lithium-ion battery with overcharge[J].Transactions of Beijing Institute of Technology,2017,37(10): 1048-1055. (in Chinese))
    [2]FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J].Applied Energy,2019,246: 53-64.
    [3]邓通相, 匡格平, 胡兆财, 等. 多再入工况下一体化热防护系统拓扑优化设计[J]. 应用数学和力学, 2023,44(11): 1299-1310.(DENG Tongxiang, KUANG Geping, HU Zhaocai, et al. Topology optimizations of integrated thermal protection systems in multiple reentry load cases[J].Applied Mathematics and Mechanics,2023,44(11): 1299-1310. (in Chinese))
    [4]KUMAR T, SURESH K. A density-and-strain-based K-clustering approach to microstructural topology optimization[J].Structural and Multidisciplinary Optimization,2020,61(4): 1399-1415.
    [5]RODRIGUES H, FERNANDES P. A material based model for topology optimization of thermoelastic structures[J].International Journal for Numerical Methods in Engineering,1995,38(12): 1951-1965.
    [6]SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J].Journal of the Mechanics and Physics of Solids,1997,45(6): 1037-1067.
    [7]DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J].Applied Thermal Engineering,2017,112: 841-854.
    [8]MANUEL M C E, LIN P T. Design explorations of heat conductive pathways[J].International Journal of Heat and Mass Transfer,2017,104: 835-851.
    [9]LORENZINI G, BARRETO E X, BECKEL C C, et al. Geometrical evaluation of T-shaped high conductive pathway with thermal contact resistance for cooling of heat-generating medium[J].International Journal of Heat and Mass Transfer,2017,108: 1884-1893.
    [10]CHEN L, FENG H, XIE Z, et al. Thermal efficiency maximization for H- and X-shaped heat exchangers based on constructal theory[J].Applied Thermal Engineering,2015,91: 456-462.
    [11]LORENZINI G, BISERNI C, ROCHA L A O. Constructal design of X-shaped conductive pathways for cooling a heat-generating body[J].International Journal of Heat and Mass Transfer,2013,58(1/2): 513-520.
    [12]FENG H, CHEN L, XIE Z, et al. Constructal design for “+” shaped high conductivity pathways over a square body[J].International Journal of Heat and Mass Transfer,2015,91: 162-169.
    [13]丁一, 吴威涛, 封锋, 等. 三维点阵结构拓扑开发研究进展及其对流传热性能对比[J]. 应用数学和力学, 2024,45(8): 1001-1023.(DING Yi, WU Weitao, FENG Feng, et al. Topology review and convective heat transfer comparison of 3D lattice structures[J].Applied Mathematics and Mechanics,2024,45(8): 1001-1023. (in Chinese))
    [14]YAN S, WANG F, SIGMUND O. On the non-optimality of tree structures for heat conduction[J].International Journal of Heat and Mass Transfer,2018,122: 660-680.
    [15]IKONEN T J, MARCK G, SBESTER A, et al. Topology optimization of conductive heat transfer problems using parametric L-systems[J].Structural and Multidisciplinary Optimization,2018,58(5): 1899-1916.
    [16]PARK J, NGUYEN T H, SHAH J J, et al. Conceptual design of efficient heat conductors using multi-material topology optimization[J].Engineering Optimization,2019,51(5): 796-814.
    [17]王钦, 刘利阳, 强博, 等. 基于变密度胞元的热传导结构层级拓扑优化[J]. 应用数学和力学, 2023,44(9): 1134-1144.(WANG Qin, LIU Liyang, QIANG Bo, et al. Topology optimization design of heat convection problems with variable-density cells[J].Applied Mathematics and Mechanics,2023,44(9): 1134-1144. (in Chinese))
    [18]TANG L, GAO T, SONG L, et al. Topology optimization of nonlinear heat conduction problems involving large temperature gradient[J].Computer Methods in Applied Mechanics and Engineering,2019,357: 112600.
    [19]ZHUANG C, XIONG Z. Temperature-constrained topology optimization of transient heat conduction problems[J].Numerical Heat Transfer (Part B): Fundamentals,2015,68(4): 366-385.
    [20]LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J].Structural and Multidisciplinary Optimization,2010,41(4): 605-620.
    [21]SVANBERG K. The method of moving asymptotes: a new method for structural optimization[J].International Journal for Numerical Methods in Engineering,1987,24(2): 359-373.
    [22]刘霏霏, 兰凤崇, 陈吉清. 基于动态内热源特性的车用锂离子动力电池温度场仿真及试验[J]. 机械工程学报, 2016,52(8): 141-151.(LIU Feifei, LAN Fengchong, CHEN Jiqing. Simulation and experiment on temperature field of lithium-ion power battery for vehicle based on characteristic of dynamic heat source[J].Journal of Mechanical Engineering,2016,52(8): 141-151. (in Chinese))
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 修回日期:  2024-12-11
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回