• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计

郭伟超 杜亮 许栋 贺钊锐 高新勤

郭伟超, 杜亮, 许栋, 贺钊锐, 高新勤. 考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计[J]. 应用数学和力学, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276
引用本文: 郭伟超, 杜亮, 许栋, 贺钊锐, 高新勤. 考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计[J]. 应用数学和力学, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276
GUO Weichao, DU Liang, XU Dong, HE Zhaorui, GAO Xinqin. Optimal Design of Battery Pack Heat Dissipation Topology Considering the Zonal Maximum Temperature Under Transient Effects[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276
Citation: GUO Weichao, DU Liang, XU Dong, HE Zhaorui, GAO Xinqin. Optimal Design of Battery Pack Heat Dissipation Topology Considering the Zonal Maximum Temperature Under Transient Effects[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1403-1415. doi: 10.21656/1000-0887.450276

考虑瞬态效应下区域最高温度的电池包散热拓扑优化设计

doi: 10.21656/1000-0887.450276
详细信息
    通讯作者:

    郭伟超(1981—),男,副教授,博士,硕士生导师(通讯作者. E-mail: Weichaoguo@xaut.edu.cn)

  • 中图分类号: O342;U463.68

Optimal Design of Battery Pack Heat Dissipation Topology Considering the Zonal Maximum Temperature Under Transient Effects

  • 摘要: 电池包的散热程度是影响其稳定性、能效和续航里程等性能的关键因素,也是新能源汽车电池性能的瓶颈之一. 针对电池包的最高温度过大导致结构失效的问题,在考虑瞬态效应的影响的条件下,提出了一种能够表示结构特定区域最高温度的方法——区域温度控制函数,并把区域最高温度作为优化目标建立了对应的拓扑优化模型,从而实现了电池在工作时间、结构特定区域的最高温度的最小化设计. 通过伴随变量法推导了目标函数关于设计变量的敏度解析表达式,从而使设计的电池包结构更合理,满足电池包的热控制需求. 最后,通过具体电池散热片的优化、分析,表明该方法可以有效提高电池包的散热效率,降低特定区域的最高温度,减少温度不均匀性,在新能源汽车领域具有广阔的应用前景.
  • 图  1  瞬态热传导边界条件

    Figure  1.  Transient heat conduction boundary conditions

    图  2  动力电池实物图

    Figure  2.  The physical picture of a power battery

    图  3  动力电池散热示意图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The power battery heat dissipation diagram

    图  4  四边散热模型边界条件

    Figure  4.  Boundary conditions for the 4-sided thermal model

    图  5  目标Ⅰ和目标Ⅱ不同工作时间下的最高温度

    Figure  5.  The maximum temperature histograms of target Ⅰ and target Ⅱ for different working hours

    图  6  目标Ⅰ 1 000 s时的最高温度迭代曲线

    Figure  6.  Iterative curves of the maximum temperature at 1 000 s for target Ⅰ

    图  7  目标Ⅱ 1 000 s时的最高温度迭代曲线

    Figure  7.  Iterative curves of the maximum temperature at 1 000 s for target Ⅱ

    表  1  目标Ⅰ和目标Ⅱ不同工作时间下的最优构型

    Table  1.   Optimal configurations of target Ⅰ and target Ⅱ for different working hours

    t/s target Ⅰ target Ⅱ t/s target Ⅰ target Ⅱ
    50 1 000
    100 5 000
    250 10 000
    500 20 000
    下载: 导出CSV

    表  2  结构在不同工作时间下的温度分布

    Table  2.   Temperature distributions for different operating hours

    t/s target Ⅰ target Ⅱ
    50
    100
    250
    500
    1 000
    下载: 导出CSV

    表  3  结构在不同充放电速率下的温度分布

    Table  3.   Temperature distributions for the structure at different charge-discharge rates

    rate target Ⅰ target Ⅱ
    0.5C
    1C
    2C
    下载: 导出CSV

    表  4  目标Ⅰ和目标Ⅱ不同体积分数下的最优构型

    Table  4.   Optimal configurations for different volume fractions of target Ⅰ and target Ⅱ

    volume/% 25 35 45 55 60
    target Ⅰ
    target Ⅱ
    下载: 导出CSV

    表  5  结构在不同环境温度下的温度分布

    Table  5.   Temperature distributions of the structure for different ambient temperatures

    T/℃ target Ⅰ target Ⅱ
    -20
    25
    40
    下载: 导出CSV
  • [1] 齐创, 朱艳丽, 高飞, 等. 过充电条件下锂离子电池热失控数值模拟[J]. 北京理工大学学报, 2017, 37(10): 1048-1055.

    QI Chuang, ZHU Yanli, GAO Fei, et al. Thermal runaway analysis of lithium-ion battery with overcharge[J]. Transactions of Beijing Institute of Technology, 2017, 37(10): 1048-1055. (in Chinese)
    [2] FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. doi: 10.1016/j.apenergy.2019.04.009
    [3] 邓通相, 匡格平, 胡兆财, 等. 多再入工况下一体化热防护系统拓扑优化设计[J]. 应用数学和力学, 2023, 44(11): 1299-1310. doi: 10.21656/1000-0887.440163

    DENG Tongxiang, KUANG Geping, HU Zhaocai, et al. Topology optimizations of integrated thermal protection systems in multiple reentry load cases[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1299-1310. (in Chinese) doi: 10.21656/1000-0887.440163
    [4] KUMAR T, SURESH K. A density-and-strain-based K-clustering approach to microstructural topology optimization[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1399-1415. doi: 10.1007/s00158-019-02422-4
    [5] RODRIGUES H, FERNANDES P. A material based model for topology optimization of thermoelastic structures[J]. International Journal for Numerical Methods in Engineering, 1995, 38(12): 1951-1965. doi: 10.1002/nme.1620381202
    [6] SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6): 1037-1067. doi: 10.1016/S0022-5096(96)00114-7
    [7] DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112: 841-854. doi: 10.1016/j.applthermaleng.2016.10.134
    [8] MANUEL M C E, LIN P T. Design explorations of heat conductive pathways[J]. International Journal of Heat and Mass Transfer, 2017, 104: 835-851. doi: 10.1016/j.ijheatmasstransfer.2016.08.077
    [9] LORENZINI G, BARRETO E X, BECKEL C C, et al. Geometrical evaluation of T-shaped high conductive pathway with thermal contact resistance for cooling of heat-generating medium[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1884-1893. doi: 10.1016/j.ijheatmasstransfer.2017.01.008
    [10] CHEN L, FENG H, XIE Z, et al. Thermal efficiency maximization for H- and X-shaped heat exchangers based on constructal theory[J]. Applied Thermal Engineering, 2015, 91: 456-462. doi: 10.1016/j.applthermaleng.2015.08.029
    [11] LORENZINI G, BISERNI C, ROCHA L A O. Constructal design of X-shaped conductive pathways for cooling a heat-generating body[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 513-520.
    [12] FENG H, CHEN L, XIE Z, et al. Constructal design for "+" shaped high conductivity pathways over a square body[J]. International Journal of Heat and Mass Transfer, 2015, 91: 162-169. doi: 10.1016/j.ijheatmasstransfer.2015.07.105
    [13] 丁一, 吴威涛, 封锋, 等. 三维点阵结构拓扑开发研究进展及其对流传热性能对比[J]. 应用数学和力学, 2024, 45(8): 1001-1023. doi: 10.21656/1000-0887.450184

    DING Yi, WU Weitao, FENG Feng, et al. Topology review and convective heat transfer comparison of 3D lattice structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1001-1023. (in Chinese) doi: 10.21656/1000-0887.450184
    [14] YAN S, WANG F, SIGMUND O. On the non-optimality of tree structures for heat conduction[J]. International Journal of Heat and Mass Transfer, 2018, 122: 660-680. doi: 10.1016/j.ijheatmasstransfer.2018.01.114
    [15] IKONEN T J, MARCK G, SÓBESTER A, et al. Topology optimization of conductive heat transfer problems using parametric L-systems[J]. Structural and Multidisciplinary Optimization, 2018, 58(5): 1899-1916. doi: 10.1007/s00158-018-2055-7
    [16] PARK J, NGUYEN T H, SHAH J J, et al. Conceptual design of efficient heat conductors using multi-material topology optimization[J]. Engineering Optimization, 2019, 51(5): 796-814. doi: 10.1080/0305215X.2018.1497613
    [17] 王钦, 刘利阳, 强博, 等. 基于变密度胞元的热传导结构层级拓扑优化[J]. 应用数学和力学, 2023, 44(9): 1134-1144. doi: 10.21656/1000-0887.430383

    WANG Qin, LIU Liyang, QIANG Bo, et al. Topology optimization design of heat convection problems with variable-density cells[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1134-1144. (in Chinese) doi: 10.21656/1000-0887.430383
    [18] TANG L, GAO T, SONG L, et al. Topology optimization of nonlinear heat conduction problems involving large temperature gradient[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112600. doi: 10.1016/j.cma.2019.112600
    [19] ZHUANG C, XIONG Z. Temperature-constrained topology optimization of transient heat conduction problems[J]. Numerical Heat Transfer (Part B): Fundamentals, 2015, 68(4): 366-385. doi: 10.1080/10407790.2015.1033306
    [20] LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41(4): 605-620. doi: 10.1007/s00158-009-0440-y
    [21] SVANBERG K. The method of moving asymptotes: a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. doi: 10.1002/nme.1620240207
    [22] 刘霏霏, 兰凤崇, 陈吉清. 基于动态内热源特性的车用锂离子动力电池温度场仿真及试验[J]. 机械工程学报, 2016, 52(8): 141-151.

    LIU Feifei, LAN Fengchong, CHEN Jiqing. Simulation and experiment on temperature field of lithium-ion power battery for vehicle based on characteristic of dynamic heat source[J]. Journal of Mechanical Engineering, 2016, 52(8): 141-151. (in Chinese)
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  17
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 修回日期:  2024-12-11
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回