留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阻抗试样动态加载试验相关问题研究

殷建平 张晨旭 孙若恒 陈希曦 苗应刚

殷建平, 张晨旭, 孙若恒, 陈希曦, 苗应刚. 低阻抗试样动态加载试验相关问题研究[J]. 应用数学和力学, 2025, 46(5): 650-660. doi: 10.21656/1000-0887.450279
引用本文: 殷建平, 张晨旭, 孙若恒, 陈希曦, 苗应刚. 低阻抗试样动态加载试验相关问题研究[J]. 应用数学和力学, 2025, 46(5): 650-660. doi: 10.21656/1000-0887.450279
YIN Jianping, ZHANG Chenxu, SUN Ruoheng, CHEN Xixi, MIAO Yinggang. Study of Dynamic Loading Tests on Low-Impedance Specimens[J]. Applied Mathematics and Mechanics, 2025, 46(5): 650-660. doi: 10.21656/1000-0887.450279
Citation: YIN Jianping, ZHANG Chenxu, SUN Ruoheng, CHEN Xixi, MIAO Yinggang. Study of Dynamic Loading Tests on Low-Impedance Specimens[J]. Applied Mathematics and Mechanics, 2025, 46(5): 650-660. doi: 10.21656/1000-0887.450279

低阻抗试样动态加载试验相关问题研究

doi: 10.21656/1000-0887.450279
基金项目: 

国家自然科学基金 12472392

陕西省国际科技合作基金重点项目 2023-GHZD-12

中国航空科学基金 2023-GHZD-12

详细信息
    作者简介:

    殷建平(1996—),男,博士生(E-mail: jpyin@mail.nwpu.edu.cn)

    通讯作者:

    苗应刚(1983—),男,副教授,博士,硕士生导师(通讯作者. E-mail: ygmiao@nwpu.edu.cn)

  • 中图分类号: O348

Study of Dynamic Loading Tests on Low-Impedance Specimens

  • 摘要: 研究了Hopkinson杆开展低阻抗试样高应变率加载测试的关键问题:低阻抗透射信号有效采集和应力平衡问题. 综合前期研究基础,选用异质低阻抗透射杆并辅以原位标定半导体应变片技术,实现低阻抗试样高精度测试;结合应力波加载试样的过程重构计算和分析,获得了低阻抗试样的应力平衡历程和影响因素敏感性特征,并提出了类梯形入射波,可使低阻抗试样尽早实现应力平衡和恒定应变率加载. 研究结果表明:低阻抗有机玻璃杆/管作为透射杆并辅以半导体应变片可实现载荷低至数Newton的透射信号采集;低阻抗试样应力平衡历程依赖于其弹性波速,在类梯形入射波加载下,2倍特征时间上升沿时可实现应力平衡以及其后的恒定应变率加载;其可基于试样厚度设计实现不同应变率加载下的临界有效应变一致性.
  • 图  1  传统Hopkinson压杆组成

    Figure  1.  An illustration for the traditional split Hopkinson pressure bar

    图  2  用于Hopkinson杆系统应变信号测量的Wheatstone电桥电路图

    Figure  2.  The Wheatstone bridge circuit for detecting strain signals of the split Hopkinson pressure bar

    图  3  应力波加载试样时反射和透射波形

    Figure  3.  The series of reflected and transmitted waves for a stress wave loading on the specimen

    图  4  SHPB中斜坡加载下试样应力平衡变化

    Figure  4.  The stress equilibrium variations of the specimens under the ramp loading in SHPBs

    图  5  类梯形入射波及其反射波、透射波和应力平衡系数随加载时间变化

    Figure  5.  The trapezoidal incident wave and its reflected wave, transmitted wave and stress equilibrium ratio varying with the loading time

    图  6  基于波形重构得到的应力-应变曲线与应变率-应变曲线

    Figure  6.  The stress-strain curve and strain rate-strain curve obtained based on waveform reconstruction

    图  7  双线性波加载下试样临界有效应变的确定

    Figure  7.  The determination of the critical effective strain of the specimen under biaxial wave loading

    表  1  金属栅丝应变片和半导体应变片输出电压信号对比

    Table  1.   Output signal comparison of the metal grid strain gauge and the semiconductor strain gauge

    strain gauge input voltage /V resistance /Ω gain factor strain /με output signal /mV
    metal grid 30 1 000 150 100 2.74
    semiconductor 30 1 000 2.10 100 213
    下载: 导出CSV

    表  2  改进型Hopkinson杆和试样尺寸与力学参数

    Table  2.   Dimensions and mechanic parameters of the modified SHPBs and specimens

    incident bar(steel) specimen(rubber) specimen(TC4) transmitted bar(steel) transmitted bar(PMMA)
    diameter /mm 19 5 5 19 8
    length or thickness /mm 3 100 5 5 3 100 1 000
    elastic modulus /MPa 210 000 1 113 000 210 000 5 000
    density /(kg/m3) 8 060 900 4 560 8 060 1 200
    wave speed /(m/s) 5 104 33.33 4 978 5 104 2 041
    specific impedance ratio 19 803 1 757 19 803 209
    下载: 导出CSV
  • [1] 张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型[J]. 爆炸与冲击, 2015, 35 (1): 51-56.

    ZHANG Longhui, ZHANG Xiaoqing, YAO Xiaohu, et al. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion and Shock Waves, 2015, 35 (1): 51-56. (in Chinese)
    [2] 许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术[J]. 力学学报, 2016, 48 (3): 654-659.

    XU Zejian, DING Xiaoyan, ZHANG Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (3): 654-659. (in Chinese)
    [3] 张方举, 何鹏, 胡文军, 等. 软材料的低阻抗SHPB实验技术与应用[J]. 中国测试, 2012, 38 (2): 17-20.

    ZHANG Fangju, HE Peng, HU Wenjun, et al. Application and experimental technique of low impedance SHPB for soft materials[J]. China Measurement & Test, 2012, 38 (2): 17-20. (in Chinese)
    [4] 章超, 徐松林, 王鹏飞. 基于数字图像相关方法对冲击载荷下泡沫铝全场变形过程的测试[J]. 实验力学, 2013, 28 (5): 629-634.

    ZHANG Chao, XU Songlin, WANG Pengfei. Test of aluminum foam deforming process under impact load based on digital image correlation method[J]. Journal of Experimental Mechanics, 2013, 28 (5): 629-634. (in Chinese)
    [5] HOU B, WANG Y, TANG Z B, et al. The mechanical behaviors of corrugated sandwich panel under quasi-static and dynamic shear-compressive loadings[J]. International Journal of Impact Engineering, 2021, 156 : 103956. doi: 10.1016/j.ijimpeng.2021.103956
    [6] 周睿, 张志家, 张旺, 等. 多壁管增强泡沫铝结构动态响应及吸能性能研究[J]. 应用数学和力学, 2024, 45 (1): 12-24. doi: 10.21656/1000-0887.440186

    ZHOU Rui, ZHANG Zhijia, ZHANG Wang, et al. Dynamic response and energy absorption performances of multi-walled tube reinforced aluminum foam structure[J]. Applied Mathematics and Mechanics, 2024, 45 (1): 12-24. (in Chinese) doi: 10.21656/1000-0887.440186
    [7] 范志庚, 万强, 牛红攀, 等. 计及时变演化特征的硅泡沫垫层非线性黏弹性模型研究[J]. 应用数学和力学, 2024, 45 (2): 167-174. doi: 10.21656/1000-0887.440249

    FAN Zhigeng, WAN Qiang, NIU Hongpan, et al. A nonlinear viscoelastic model for silicon rubber foam cushion considering time-varying evolution characteristics[J]. Applied Mathematics and Mechanics, 2024, 45 (2): 167-174. (in Chinese) doi: 10.21656/1000-0887.440249
    [8] MIAO Y G, ZHANG H N, HE H, et al. Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range[J]. Composite Structures, 2019, 222 : 110923. doi: 10.1016/j.compstruct.2019.110923
    [9] 高宁, 朱志武. 铝合金应变率效应综述及其机理研究[J]. 应用数学和力学, 2014, 35 (S1): 208-212.

    GAO Ning, ZHU Zhiwu. Study on the strain rate effects and mechanisms for aluminum alloys[J]. Applied Mathematics and Mechanics, 2014, 35 (S1): 208-212. (in Chinese)
    [10] CHEN C Y, ZHANG C, LIU C L, et al. Rate-dependent tensile failure behavior of short fiber reinforced PEEK[J]. Composites (Part B): Engineering, 2018, 136 : 187-196. doi: 10.1016/j.compositesb.2017.10.031
    [11] QIN D Y, MIAO Y G, LI Y L. Formation of adiabatic shearing band for high-strength Ti-5553 alloy: a dramatic thermoplastic microstructural evolution[J]. Defence Technology, 2022, 18 (11): 2045-2051. doi: 10.1016/j.dt.2022.06.010
    [12] MIAO Y G, DU W X, YIN J P, et al. Characterizing multi mechanical behaviors for epoxy-like materials under wide strain rate range[J]. Polymer Testing, 2022, 116 : 107804. doi: 10.1016/j.polymertesting.2022.107804
    [13] WU Z B, YIN J P, LI M, et al. Rate-dependent constitutive behavior and mechanism of CMDB under tension loading[J]. Polymer Testing, 2024, 140 : 108584. doi: 10.1016/j.polymertesting.2024.108584
    [14] HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Proceedings of the Royal Society of London (Series A), 1914, 89 (612): 411-413.
    [15] MIYAMBO M E, VON KALLON D V, PANDELANI T, et al. Review of the development of the split Hopkinson pressure bar[J]. Procedia CIRP, 2023, 119 : 800-808. doi: 10.1016/j.procir.2023.04.010
    [16] WANG L L. Foundations of Stress Waves[M]. Amsterdam: Elsevier, 2007: 43-49, 65-70.
    [17] CHEN W, SONG B. Split Hopkinson (Kolsky) Bar Design, Testing and Applications[M]. New York: Springer, 2010: 37-51.
    [18] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术[M]. 北京: 科学出版社, 2013: 23-52.

    LU Fangyun, CHEN Rong, LIN Yuliang, et al. Hopkinson Bar Techniques[M]. Beijing: Science Press, 2013: 23-52. (in Chinese)
    [19] 胡时胜. Hopkinson压杆实验技术的应用进展[J]. 实验力学, 2005, 20 (4): 589-594. doi: 10.3969/j.issn.1001-4888.2005.04.016

    HU Shisheng. The application development of experimental technique of Hopkinson pressure bar[J]. Journal of Experimental Mechanics, 2005, 20 (4): 589-594. (in Chinese) doi: 10.3969/j.issn.1001-4888.2005.04.016
    [20] ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar[J]. International Journal of Impact Engineering, 1997, 19 (4): 319-330. doi: 10.1016/S0734-743X(96)00038-3
    [21] CHEN W, ZHANG B, FORRESTAL M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics, 1999, 39 : 81-85. doi: 10.1007/BF02331109
    [22] CHEN W, LU F, ZHOU B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40 (1): 1-6. doi: 10.1007/BF02327540
    [23] SONG B, CHEN W, JIANG X. Split Hopkinson pressure bar experiments on polymeric foams[J]. International Journal of Vehicle Design, 2005, 37 (2/3): 185-198. doi: 10.1504/IJVD.2005.006656
    [24] YIN J P, MIAO Y G, WU Z B, et al. A novel Hopkinson tension bar system for testing polymers under intermediate strain rate and large deformation[J]. International Journal of Impact Engineering, 2025, 198 : 105197. doi: 10.1016/j.ijimpeng.2024.105197
    [25] 王宝珍, 郑宇轩, 胡时胜. 猪后腿肌肉的动态拉伸性能[J]. 爆炸与冲击, 2010, 30 (5): 449-455.

    WANG Baozhen, ZHENG Yuxuan, HU Shisheng. Dynamic tensile properties of porcine ham muscle[J]. Explosion and Shock Waves, 2010, 30 (5): 449-455. (in Chinese)
    [26] 徐沛保, 巫绪涛, 李和平. 中高应变率下EPS泡沫的冲击压缩实验[J]. 实验力学, 2012, 27 (4): 480-485.

    XU Peibao, WU Xutao, LI Heping. Impact compression experiment for EPS foam under mid-high strain rate[J]. Journal of Experimental Mechanics, 2012, 27 (4): 480-485. (in Chinese)
    [27] MIAO Y G, LI Y L, DENG Q, et al. Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar[J]. Journal of Beijing Institute of Technology, 2015, 24 (2): 269-276.
    [28] 周永康, 陈力, 崔世堂. 一种新型软材料动态直接拉伸实验技术[J]. 振动与冲击, 2017, 36 (22): 144-148.

    ZHOU Yongkang, CHEN Li, CUI Shitang. An improved SHTB experimental facility for soft material[J]. Journal of Vibration and Shock, 2017, 36 (22): 144-148. (in Chinese)
    [29] 鲍振宇, 温垚珂, 韩瑞国, 等. 弹道明胶的动态力学测试方法研究[J]. 中国测试, 2019, 45 (9): 33-37.

    BAO Zhenyu, WEN Yaoke, HAN Ruiguo, et al. Study on dynamic mechanical testing method of ballistic gelatin[J]. China Measurement & Test, 2019, 45 (9): 33-37. (in Chinese)
    [30] XU P D, TANG L Q, ZHANG Y R, et al. SHPB experimental method for ultra-soft materials in solution environment[J]. International Journal of Impact Engineering, 2022, 159 : 104051. doi: 10.1016/j.ijimpeng.2021.104051
    [31] WEN Y K, XU L, CHEN A J, et al. Dynamic compressive response of porcine muscle measured using a split Hopkinson bar system with a pair of PVDF force transducers[J]. Defence Technology, 2023, 28 : 298-305. doi: 10.1016/j.dt.2022.08.011
    [32] MIAO Y, GOU X, SHEIKH M Z. A technique for in situ calibration of semiconductor strain gauges used in Hopkinson bar tests[J]. Experimental Techniques, 2018, 42 : 623-629. doi: 10.1007/s40799-018-0283-9
    [33] ZHANG J X, MIAO Y G, QIN Q H, et al. Static and dynamic experiments on hydrogels: effects of the chemical composition of the fluid[J]. Mechanics of Materials, 2021, 154 : 103717. doi: 10.1016/j.mechmat.2020.103717
    [34] LIU Y, DENG Q, WANG Y S, et al. Dynamic mechanical response and functional mechanisms in rabbit pulmonary tissue[J]. Mechanics of Time-Dependent Materials, 2024, 28 (4): 2921-2936. doi: 10.1007/s11043-024-09697-1
    [35] 周风华, 王礼立, 胡时胜. 高聚物SHPB试验中试件早期应力不均匀性的影响[J]. 实验力学, 1992, 7 (1): 23-29.

    ZHOU Fenghua, WANG Lili, HU Shisheng. On the effect of stress nonuniformness in polymer specimen of SHPB tests[J]. Journal of Experimental Mechanics, 1992, 7 (1): 23-29. (in Chinese)
    [36] RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77 (1): 263-267. doi: 10.1111/j.1151-2916.1994.tb06987.x
    [37] YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005, 31 (2): 129-150. doi: 10.1016/j.ijimpeng.2003.09.002
    [38] 王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25 (1): 17-25.

    WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25 (1): 17-25. (in Chinese)
    [39] ZHU J, HU S, WANG L. An analysis of stress uniformity for concrete-like specimens during SHPB tests[J]. International Journal of Impact Engineering, 2009, 36 (1): 61-72. doi: 10.1016/j.ijimpeng.2008.04.007
    [40] FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J]. Experimental Mechanics, 2001, 41 (1): 40-46. doi: 10.1007/BF02323102
    [41] 徐明利, 张若棋, 王悟, 等. 波形整形器在酚醛树脂的霍普金森压杆实验中的应用[J]. 爆炸与冲击, 2002, 22 (4): 377-380. doi: 10.3321/j.issn:1001-1455.2002.04.017

    XU Mingli, ZHANG Ruoqi, WANG Wu, et al. Application of wave shaper in SHPB experimental study of phenolic resin[J]. Explosion and Shock Waves, 2002, 22 (4): 377-380. (in Chinese) doi: 10.3321/j.issn:1001-1455.2002.04.017
    [42] SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. Experimental Mechanics, 2004, 44 (3): 300-312. doi: 10.1007/BF02427897
    [43] MIAO Y G. On loading ceramic-like materials using split Hopkinson pressure bar[J]. Acta Mechanica, 2018, 229 (8): 3437-3452. doi: 10.1007/s00707-018-2166-7
    [44] LIU L T, DENG Q, WANG R F, et al. Dynamic enhancement induced by interface for additively manufactured continuous carbon fiber reinforced composites[J]. Polymer Testing, 2024, 132 : 108382. doi: 10.1016/j.polymertesting.2024.108382
    [45] YIN J P, ZHANG C X, SUN R H, et al. Controllable kilohertz impact fatigue loading functioned by cyclic stress wave of Hopkinson tension bar and its application for TC4 titanium alloy[J]. International Journal of Fatigue, 2025, 194 : 108828. doi: 10.1016/j.ijfatigue.2025.108828
    [46] ZHANG C X, SUN R H, YIN J P, et al. Failure behaviours of steel/aluminium threaded connections under impact fatigue[J]. Engineering Failure Analysis, 2025, 174 : 109473. doi: 10.1016/j.engfailanal.2025.109473
    [47] MIAO Y G, LI Y L, LIU H Y, et al. Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar[J]. International Journal of Mechanical Sciences, 2016, 108/109 : 188-196. doi: 10.1016/j.ijmecsci.2016.02.005
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2025-04-10
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回