留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑湿热老化的复合材料机匣包容性试验与数值分析

郑竟波 张颖 姜文龙 韦林 迟雪 伊文昭 刘璐璐 陈伟

郑竟波, 张颖, 姜文龙, 韦林, 迟雪, 伊文昭, 刘璐璐, 陈伟. 考虑湿热老化的复合材料机匣包容性试验与数值分析[J]. 应用数学和力学, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289
引用本文: 郑竟波, 张颖, 姜文龙, 韦林, 迟雪, 伊文昭, 刘璐璐, 陈伟. 考虑湿热老化的复合材料机匣包容性试验与数值分析[J]. 应用数学和力学, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289
ZHENG Jingbo, ZHANG Ying, JIANG Wenlong, WEI Lin, CHI Xue, YI Wenzhao, LIU Lulu, CHEN Wei. Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment[J]. Applied Mathematics and Mechanics, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289
Citation: ZHENG Jingbo, ZHANG Ying, JIANG Wenlong, WEI Lin, CHI Xue, YI Wenzhao, LIU Lulu, CHEN Wei. Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment[J]. Applied Mathematics and Mechanics, 2025, 46(5): 661-675. doi: 10.21656/1000-0887.450289

考虑湿热老化的复合材料机匣包容性试验与数值分析

doi: 10.21656/1000-0887.450289
我刊青年编委刘璐璐、编委陈伟来稿
基金项目: 

国家自然科学基金 52375150

中央高校基本科研业务费 NC2022001

详细信息
    作者简介:

    郑竟波(2000—),女,硕士生(E-mail: 947222529@qq.com)

    通讯作者:

    刘璐璐(1988—),女,研究员,教授,博士(通讯作者. E-mail: liululu@nuaa.edu.cn)

  • 中图分类号: O313

Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment

Contributed by LIU Lulu, M.AMM Youth Editorial Board & CHEN Wei, M.AMM Editorial Board
  • 摘要: 为获得碳纤维增强树脂基复合材料(CFRP)机匣在服役环境下的包容特性,对其分别进行了湿热老化前后的两次高速冲击弹道试验,并建立了对应的机匣吸湿率分区湿热试验仿真模型与有限元高速冲击数值仿真分析模型. 结果表明:湿热老化作用对于CFRP机匣的抗冲击能力及能量吸收能力均有显著影响. 在高速冲击下,未湿热老化机匣的抗冲击能力及能量吸收能力优于湿热老化机匣. 高速冲击下,CFRP机匣的损伤形式主要以纤维和基体的拉伸失效为主,伴随着一定数量的纤维压溃和面内剪切失效,压缩失效基本没有出现,损伤出现在冲击区域附近,并沿机匣轴向与周向扩展. 此外,吸湿层的基体拉伸失效面积显著大于未老化层的基体拉伸失效面积,验证了湿热老化作用下基体力学性能的退化.
    1)  我刊青年编委刘璐璐、编委陈伟来稿
  • 图  1  复合材料机匣缩比件

    Figure  1.  The composite casing reduced-scale test specimen

    图  2  叶片冲击机匣方式示意图

    Figure  2.  Schematic diagram of blade impact magazine method

    图  3  模拟叶片示意图

    Figure  3.  Schematic of the simulation blade

    图  4  弹体示意图

    Figure  4.  Schematic of the projectile

    图  5  冲击试验系统原理图

    Figure  5.  Schematic of the impact test system

    图  6  机匣安装示意图

    Figure  6.  Schematic of the casing installation

    图  7  应变片粘贴示意图

    Figure  7.  Schematic of the strain gauge pasting

    图  8  叶片冲击机匣过程

    Figure  8.  The process of the blade impacting the casing

    图  9  未吸湿机匣打靶试验后损伤形貌

    Figure  9.  Casing damages without hygrothermal treatment after the targeting test

    图  10  吸湿机匣打靶试验后损伤形貌

    Figure  10.  Casing damages with hygrothermal treatment after the targeting test

    图  11  叶片冲击吸湿机匣过程

    Figure  11.  The blade-impacting-casing process with hygrothermal treatment

    图  12  层合板吸湿件有限元模型

    Figure  12.  The finite element model diagram of the hygrothermal treatment test laminate sample

    图  13  层合板试验和仿真吸湿率对比

    Figure  13.  Comparison of experimental and simulated hygroscopicity of the laminate

    图  14  机匣缩比件有限元模型

    Figure  14.  The finite element model for the casing scale parts

    图  15  湿热试验机匣吸湿率分布云图

    Figure  15.  The hygroscopicity distribution of the casing in hygrothermal treatment

    图  16  机匣厚度截面吸湿率分布

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  16.  The hygroscopicity distribution of the casing in hygrothermal treatment

    图  17  复合材料机匣和TC4叶片的弹道冲击有限元模型

    Figure  17.  The ballistic impact finite element modeling of the composite casing and TC4 blades

    图  18  未吸湿机匣等效应力云图

    Figure  18.  Stress nephograms of the casing without hygrothermal treatment

    图  19  吸湿机匣等效应力云图

    Figure  19.  Stress nephograms of the casing with hygrothermal treatment

    图  20  未吸湿机匣与吸湿机匣冲击仿真模拟叶片动能-时间曲线

    Figure  20.  The kinetic energy-time curves of the simulated blade impacting the casing with and without hygrothermal treatment

    图  21  吸湿机匣冲击仿真损伤变量云图

    Figure  21.  Damage variable nephograms of the impacted casing with hygrothermal treatment

    表  1  湿热试验数据记录

    Table  1.   Material mechanical properties used for TG800H/E1806

    specimen test temperature/℃ soaking hours/h mass before test/g mass after test/g hygroscopicity/%
    casing 85 720 3 472.95 3 514.05 1.18
    laminate 85 720 68 68.64 0.94
    下载: 导出CSV

    表  2  空气炮打靶试验记录

    Table  2.   Records of the air cannon targeting tests

    target test mass of blade /g incidence velocity /(m/s) residual speed /(m/s) damage
    casing without hygrothermal treatment 405 144 100 penetration
    casing with hygrothermal treatment 403 140 105 penetration
    下载: 导出CSV

    表  3  两次试验机匣吸收能量值

    Table  3.   Absorbed energy values of 2 tests respectively

    target test ΔE/J
    casing without hygrothermal treatment 2 174.0
    casing with hygrothermal treatment 1 727.9
    下载: 导出CSV

    表  4  网格敏感性验证

    Table  4.   The mesh sensitivity verification

    number FEA element size/(mm×mm×mm) FEA element quantity ΔE/J
    1 6×6×0.125 40 000 2 591.7
    2 5×5×0.125 57 600 1 978.4
    3 4×4×0.125 92 416 1 886.2
    4 3×3×0.125 160 000 1 902.6
    下载: 导出CSV

    表  5  复合材料机匣单独铺层的铺层角度

    Table  5.   Individual ply angles of the composite casing

    number of composite layers ply angle /(°) number of composite layers ply angle /(°)
    1 45 17 90
    2 90 18 45
    3 -45 19 0
    4 90 20 -45
    5 0 21 90
    6 90 22 45
    7 -45 23 0
    8 0 24 90
    9 90 25 0
    10 0 26 -45
    11 45 27 90
    12 90 28 0
    13 -45 29 90
    14 0 30 -45
    15 45 31 90
    16 90 32 45
    下载: 导出CSV

    表  6  TG800H-12k/E1806材料参数

    Table  6.   Material parameters of TG800H-12k/E180

    parameter symbol without hygrothermal treatment with hygrothermal treatment
    density ρ/(kg/m3) 1 560 1 560
    longitudinal Young’s modulus E1/GPa 164 167
    transverse Young’s modulus (E2=E3)/GPa 9.41 5.71
    Poisson’s ratio ν12=ν21
    ν23
    0.3
    0.3
    0.3
    0.3
    longitudinal shear modulus (G12=G13)/MPa 5 090 3 410
    transverse shear modulus G23/MPa 3 700 2 480
    shear strength S/MPa 88.7 48.2
    longitudinal tensile strength XT/MPa 2 744 2 520
    longitudinal compressive strength XC/MPa 1 450 1 081
    transverse tensile strength YT/MPa 74.1 46
    transverse compressive strength YC/MPa 272 146
    fiber shear strength SFS/MPa 251 251
    fiber compressive strength SFC/MPa 350 350
    strain rate constant C1
    C2=C3=C4
    0.014
    0.042
    0.014
    0.042
    damage angle φ/(°) 10 10
    damage parameter m1=m2
    m3=m4
    2
    0.2
    2
    0.2
    下载: 导出CSV

    表  7  层间材料性能参数

    Table  7.   Material parameters of cohesive elements

    parameter symbol without hygrothermal treatment with hygrothermal treatment hygroscopicity 1%~2%
    cohesive stiffness $k_n^0 / \mathrm{GPa}$ 105 105 105
    $\left(k_s^0=k_t^0\right) / \mathrm{GPa}$ 105 105 105
    critical energy release rate $G_n^{\mathrm{C}} /\left(\mathrm{J} / \mathrm{m}^2\right)$ 280 370.7 254.6
    $\left(G_s^{\mathrm{C}}=G_t^{\mathrm{C}}\right) /\left(\mathrm{J} / \mathrm{m}^2\right)$ 2 710 1 710 2 122
    cohesive stress $t_n^0 /\left(\mathrm{J} / \mathrm{m}^2\right)$ 60 43 67.1
    $t_s^0=t_t^0 / \mathrm{MPa}$ 103 74 115
    下载: 导出CSV

    表  8  TC4材料参数设置(基本物理参数)

    Table  8.   Material parameters of TC4 (basic physical parameters)

    E/GPa ν ρ/(kg/m3) Tm/K Tr/K Cp/(J/(kg·K))
    135 0.33 4 430 1 922 293 563
    下载: 导出CSV

    表  9  TC4材料参数设置(Johnson-Cook参数)

    Table  9.   Material parameters of TC4 (Johnson-Cook parameters)

    $\dot{\varepsilon}_0 / \mathrm{s}^{-1}$ A/MPa B/MPa C n m
    4×10-4 1 060 1 090 0.011 7 0.884 1.1
    下载: 导出CSV

    表  10  TC4材料参数设置(Johnson-Cook失效准则参数)

    Table  10.   Material parameters of TC4 (Johnson-Cook failure criterion parameters)

    D1 D2 D3 D4 D5
    -0.09 0.27 0.48 0.014 3.87
    下载: 导出CSV

    表  11  TC4材料参数设置(状态方程参数)

    Table  11.   Material parameters of TC4 (parameters of the equation of state)

    S1 S2 S3 γ0 α
    1.028 0 0 1.230 0
    下载: 导出CSV

    表  12  两次试验与仿真叶片剩余速度对比

    Table  12.   Comparison of blade residual velocities

    casing type impact test residual velocity impact simulation residual velocity inaccuracy/%
    casing without hygrothermal treatment 100 109.4 9.4
    casing with hygrothermal treatment 105 110.8 5.5
    下载: 导出CSV
  • [1] 陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社, 2006: 548-551.

    CHEN Guang. Analysis of Aeroengine Structure Design[M]. Beijing: Beihang University Press, 2006: 548-551. (in Chinese)
    [2] United States Air Force. Engine structural integrity program: MIL2STD21783B[S]. USA: Department of Defense, 2002.
    [3] 中国民用航空局. 航空发动机适航规定: CCAR—33R2[S]. 北京: 中国民用航空局, 2016.

    Civil Aviation Administration of China. Aviation engine air-worthiness regulations: CCAR—33R2[S]. Beijing: Civil Aviation Administration of China, 2016. (in Chinese)
    [4] HOLMES M. Carbon fibre reinforced plastics market continues growth path[J]. Reinforced Plastics, 2013, 57 (6): 24-29. doi: 10.1016/S0034-3617(13)70186-3
    [5] MARSH G. Aero engines lose weight thanks to composites[J]. Reinforced Plastics, 2012, 56 (6): 32-35. doi: 10.1016/S0034-3617(12)70146-7
    [6] MAZUMDAR S. Composites Manufacturing: Materials, Product, and Process Engineering[M]. Boca Raton: CRC Press, 2001.
    [7] 沈尔明, 王志宏, 赵凤飞, 等. 风扇机匣材料应用现状与发展[J]. 航空制造技术, 2013, 56 (13): 92-95.

    SHEN Erming, WANG Zhihong, ZHAO Fengfei, et al. Application and development of material for aeroengine fan case[J]. Aeronautical Manufacturing Technology, 2013, 56 (13): 92-95. (in Chinese)
    [8] 李佳楠, 姜亚明, 项赫, 等. 高性能纤维增强树脂基复合材料湿热老化研究进展[J]. 化工新型材料, 2024, 52 (1): 1-7.

    LI Jianan, JIANG Yaming, XIANG He, et al. Research progress on the hygrothermal aging of high-performance fiber reinforced resin matrix composites[J]. New Chemical Materials, 2024, 52 (1): 1-7. (in Chinese)
    [9] DEWHURST T B. The impact load on containment rings during a multiple blade shed in aircraft gas turbine engines[C]//Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. Orlando, FL, USA: ASME, 1991.
    [10] RICHARDSON I J, HYDE T M, BECKER A A, et al. A three-dimensional finite element investigation of the bolt stresses in an aero-engine Curvic coupling under a blade release condition[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2000, 214 (4): 231-245. doi: 10.1243/0954410001532033
    [11] 张伯熹, 宣海军, 吴荣仁. 航空发动机涡轮叶片包容模拟试验研究[J]. 机械工程师, 2006(10): 114-116.

    ZHANG Boxi, XUAN Haijun, WU Rongren. Research on aero-engine turbine blade containment experiment[J]. Mechanical Engineer, 2006(10): 114-116. (in Chinese)
    [12] 古兴瑾. 复合材料层板高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2011.

    GU Xingjin. Research on high velocity impact damage of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
    [13] 蔡雄峰. 复合材料层合板高速冲击损伤研究[D]. 天津: 中国民航大学, 2020.

    CAI Xiongfeng. Research on high-speed impact damage of composite laminates[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese)
    [14] 何庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012, 27 (2): 295-300.

    HE Qing, XUAN Haijun, LIU Lulu. Numerical analysis of real aero-engine first-stage fan blade containment[J]. Journal of Aerospace Power, 2012, 27 (2): 295-300. (in Chinese)
    [15] 杜长美. 三维四向编织复合材料湿热老化后低速冲击及其剩余压缩性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2023.

    DU Changmei. Study on low-velocity impact and residual compression properties of three-dimensional four-directions braided composites after damp-heat aging[D]. Harbin: Harbin University of Science and Technology, 2023. (in Chinese)
    [16] MOKHTAR H, SICOT O, ROUSSEAU J, et al. The influence of ageing on the impact damage of carbon epoxy composites[J]. Procedia Engineering, 2011, 10 : 2615-2620. doi: 10.1016/j.proeng.2011.04.436
    [17] HOSUR M V, JAIN K, CHOWDHURY F, et al. Low-velocity impact response of carbon/epoxy laminates subjected to cold-dry and cold-moist conditioning[J]. Composite Structures, 2007, 79 (2): 300-311. doi: 10.1016/j.compstruct.2006.11.011
    [18] ZHANG C, BINIENDA W K, MORSCHER G N, et al. Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites[J]. Composites (Part A): Applied Science and Manufacturing, 2013, 46 : 34-44. doi: 10.1016/j.compositesa.2012.10.006
    [19] ATAS C, DOGAN A. An experimental investigation on the repeated impact response of glass/epoxy composites subjected to thermal ageing[J]. Composites Part B: Engineering, 2015, 75 : 127-134. doi: 10.1016/j.compositesb.2015.01.032
    [20] 徐凯龙. 循环湿热作用下三维编织复合材料力学性能与抗冲击性能研究[D]. 南京: 南京航空航天大学, 2018.

    XU Kailong. Effect of cyclic hygrothermal aging on mechanical properties and impact resistance of three dimensional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [21] LIU L, ZHAO Z, CHEN W, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J]. Composite Structures, 2018, 204 : 645-657. doi: 10.1016/j.compstruct.2018.08.009
    [22] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35 (22): 161-168.

    HUI Xulong, MU Rangke, BAI Chunyu, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock, 2016, 35 (22): 161-168. (in Chinese)
  • 加载中
图(21) / 表(12)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2024-11-23
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回