|
周博, 郑雪瑶, 康泽天, 等. 基于修正偶应力理论的Timoshenko微梁模型和尺寸效应研究[J]. 应用数学和力学, 2019,40(12): 1321-1334.(ZHOU Bo, ZHENG Xueyao, KANG Zetian, et al. A Timoshenko micro-beam model and its size effects based on the modified couple stress theory[J].Applied Mathematics and Mechanics,2019,40(12): 1321-1334. (in Chinese))
|
|
[2]关玉铭, 戈新生. 基于非约束模态的中心刚体-Timoshenko梁动力学建模与分析[J]. 应用数学和力学, 2022,43(2): 156-165. (GUAN Yuming, GE Xinsheng. Dynamic modeling and analysis of the central rigid body-Timoshenko beam model based on unconstrained modes[J].Applied Mathematics and Mechanics,2022,43(2): 156-165. (in Chinese))
|
|
[3]LOVE A E.A Treatise on the Mathematical Theory of Elasticity[M]. New York: Dover, 1927: 314-331.
|
|
[4]TRAILL-NASH R W, COLLAR A R. The effects of shear flexibility and rotatory inertia on the bending vibrations of beams[J].The Quarterly Journal of Mechanics and Applied Mathematics,1953,6(2): 186-222.
|
|
[5]LUBLINER E, ELISHAKOFF I. Random vibration of system with finitely many degrees of freedom and several coalescent natural frequencies[J].International Journal of Engineering Science,1986,24(4): 461-470.
|
|
[6]ELISHAKOFF I.Handbook on Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories[M]. New York: Isaac Elishakoff, 2019: 107-138.
|
|
[7]余云燕, 孔嘉乐, 陈进浩, 等. 变截面修正Timoshenko梁自振频率的回传射线矩阵法分析[J]. 地震工程学报, 2022,44(4): 751-758. (YU Yunyan, KONG Jiale, CHEN Jinhao, et al. Natural frequency of a modified Timoshenko beam with variable cross-section with the method of reverberation ray matrix[J].China Earthquake Engineering Journal,2022,44(4): 751-758. (in Chinese))
|
|
[8]LI M L, WEI P J, ZHOU X L. Wave propagation and free vibration of a Timoshenko beam mounted on the viscoelastic Pasternak foundation modeled by fraction-order derivatives[J].Mechanics of Time-Dependent Materials,2023,27(4): 1209-1223.
|
|
[9]吴晓, 罗佑新. 用Timoshenko梁修正理论研究功能梯度材料梁的动力响应[J]. 振动与冲击, 2011,30(10): 245-248. (WU Xiao, LUO Youxin. Dynamic responses of a beam with functionally graded materials with Timoshenko beam correction theory[J].Journal of Vibration and Shock,2011,30(10): 245-248. (in Chinese))
|
|
[10]FALSONE G, SETTINERI D, ELISHAKOFF I. A new class of interdependent shape polynomials for the FE dynamic analysis of Mindlin plate Timoshenko beam[J].Meccanica,2015,50(3): 767-780.
|
|
[11]ELISHAKOFF I, TONZANI G M, MARZANI A. Effect of boundary conditions in three alternative models of Timoshenko-Ehrenfest beams on Winkler elastic foundation[J].Acta Mechanica,2018,229(4): 1649-1686.
|
|
[12]ELISHAKOFF I, TONZANI G M, MARZANI A. Three alternative versions of Bresse-Timoshenko theory for beam on pure Pasternak foundation[J].International Journal of Mechanical Sciences,2018,149: 402-412.
|
|
[13]KARNOPP B H. Duality relations in the analysis of beam oscillations[J].Zeitschrift für Angewandte Mathematik und Physik ZAMP,1967,18(4): 575-580.
|
|
[14]CHEN Q, ZHU D. Vibrational analysis theory and application to elastic-viscoelastic composite structures[J].Computers & Structures,1990,37(4): 585-595.
|
|
[15]RAM Y M, ELHAY S. Dualities in vibrating rods and beams: continuous and discrete models[J].Journal of Sound and Vibration,1995,184(5): 759-766.
|
|
[16]LI X, XU F, ZHANG Z. Symplectic method for natural modes of beams resting on elastic foundations[J].Journal of Engineering Mechanics,2018,144(4): 04018009.
|
|
[17]胡海岩. 梁在固有振动中的对偶关系[J]. 力学学报, 2020,52(1): 139-149. (HU Haiyan. Duality relations of beams in natural vibrations[J].Chinese Journal of Theoretical and Applied Mechanics,2020,52(1): 139-149. (in Chinese))
|
|
[18]ELISHAKOFF I, AMATO M. Flutter of a beam in supersonic flow: truncated version of Timoshenko-Ehrenfest equation is sufficient[J].International Journal of Mechanics and Materials in Design,2021,17(4): 783-799.
|