High-Order Thin-Walled Curved Beam Elements With the Absolute Nodal Coordinate Formulation
-
摘要: 薄壁曲梁的截面易出现畸变和翘曲现象,为了能够描述其在大转动、大变形情况下的截面变形行为,提出了一种基于绝对节点坐标法的高阶梁单元. 借鉴Taylor级数展开模式构建了全局位置矢量场,通过增加单元横向节点的方式,避免了高阶导数几何意义不明确带来的困扰. 基于非线性连续介质力学理论和坐标变换策略,推导了薄壁曲梁单元的广义弹性力表达式. 通过与有限元软件中的薄壳单元进行比较,验证了该薄壁梁单元的准确性.Abstract: The cross sections of thin-walled curved beams are susceptible to distortion and warping phenomena. To describe the cross-section deformation behaviors under large rotations and deformations, a high-order beam element based on the absolute nodal coordinate formulation was proposed. The global position vector field was constructed with the Taylor series expansion method, and the issue arising from the ambiguous geometrical significance of high-order derivatives was obviated with the increase of the number of transverse nodes in the element. Based upon the nonlinear continuum mechanics theory and the coordinate transformation strategy, the generalized elastic force expression for the thin-walled curved beam element was derived. The accuracy of the proposed thin-walled beam element was validated through comparison with a thin-shell element in ABAQUS.
-
表 1 薄壁矩形截面梁的固有频率(误差)(单位:Hz)
Table 1. Frequencies (errors) of the beam with a thin-walled rectangular cross-section (unit: Hz)
kth-order 1st sweeping 1st flapping 2nd sweeping 2nd flapping 1st torsion 2nd torsion 1 46.14(27.1%) 49.73(22.4%) 220.61(26.2%) 236.81(22.7%) 1 251.57(25.6%) 1 435.59(23.2%) 2 41.57(14.5%) 42.89(5.6%) 198.13(13.39%) 204.80(6.1%) 1 138.61(14.31%) 1 259.76(8.1%) 3 39.74(9.4%) 41.72(2.7%) 186.37(6.6%) 194.81(0.9%) 1 098.45(10.28%) 1 195.15(2.5%) 4 38.62(6.3%) 40.41(0.5%) 180.48(3.2%) 191.69(0.6%) 1 065.15(6.9%) 1 185.06(1.7%) ABAQUS 36.30 40.62 174.73 192.95 966.04 1 165.10 -
[1] VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Buckling of thin-walled structures through a higher order beam model[J]. Computers and Structures, 2017, 180: 104-116. doi: 10.1016/j.compstruc.2016.01.005 [2] YANG Y B, MO X Q, SHI K, et al. Effect of damping on torsional-flexural frequencies of monosymmetric thin-walled beams scanned by moving vehicles[J]. Thin-Walled Structures, 2024, 198: 111633. doi: 10.1016/j.tws.2024.111633 [3] YUAN J R, DING H. Three-dimensional dynamic model of the curved pipe based on the absolute nodal coordinate formulation[J]. Mechanical Systems and Signal Processing, 2023, 194: 110275. doi: 10.1016/j.ymssp.2023.110275 [4] YANG Y B, KUO S R. Effect of curvature on stability of curved beams[J]. Journal of Structural Engineering, 1987, 113(6): 1185-1202. doi: 10.1061/(ASCE)0733-9445(1987)113:6(1185) [5] CHOI S, KIM Y Y. Higher-order Vlasov torsion theory for thin-walled box beams[J]. International Journal of Mechanical Sciences, 2021, 195: 106231. doi: 10.1016/j.ijmecsci.2020.106231 [6] YOON K Y, PARK N H, CHOI Y J, et al. Natural frequencies of thin-walled curved beams[J]. Finite Elements in Analysis and Design, 2006, 42(13): 1176-1186. doi: 10.1016/j.finel.2006.05.002 [7] CAI Y, CHEN H J, LV X Y, et al. Dynamic response of a thin-walled curved beam with a mono-symmetric cross-section under a moving mass[J]. Thin-Walled Structures, 2023, 189: 110941. doi: 10.1016/j.tws.2023.110941 [8] PARK S K, GAO X L. Bernoulli-Euler beam model based on a modified couple stress theory[J]. Journal of Micromechanics and Microengineering, 2006, 16(11): 2355-2359. doi: 10.1088/0960-1317/16/11/015 [9] 赵翔, 孟诗瑶. 基于Green函数分析Euler-Bernoulli双曲梁系统的受迫振动[J]. 应用数学和力学, 2023, 44(2): 168-177. doi: 10.21656/1000-0887.430298ZHAO Xiang, MENG Shiyao. Forced vibration analysis of Euler-bernoulli double-beam systems by means of Green's functions[J]. Applied Mathematics and Mechanics, 2023, 44(2): 168-177. (in Chinese) doi: 10.21656/1000-0887.430298 [10] MANTA D, GONÇALVES R. A geometrically exact Kirchhoff beam model including torsion warping[J]. Computers & Structures, 2016, 177: 192-203. [11] 卓英鹏, 王刚, 齐朝晖, 等. 节点参数含应变的空间几何非线性样条梁单元[J]. 应用数学和力学, 2022, 43(9): 987-1003. doi: 10.21656/1000-0887.420290ZHUO Yingpeng, WANG Gang, QI Zhaohui, et al. A spatial geometric nonlinearity spline beam element with nodal parameters containing strains[J]. Applied Mathematics and Mechanics, 2022, 43(9): 987-1003. (in Chinese) doi: 10.21656/1000-0887.420290 [12] SCHARDT R. Generalized beam theory: an adequate method for coupled stability problems[J]. Thin-Walled Structures, 1994, 19(2/3/4): 161-180. [13] KIM H, JANG G W. Higher-order thin-walled beam analysis for axially varying generally shaped cross sections with straight cross-section edges[J]. Computers & Structures, 2017, 189: 83-100. [14] VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. A higher order thin-walled beam model including warping and shear modes[J]. International Journal of Mechanical Sciences, 2013, 66: 67-82. doi: 10.1016/j.ijmecsci.2012.10.009 [15] VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Definition of warping modes within the context of a higher order thin-walled beam model[J]. Computers and Structures, 2015, 147: 68-78. doi: 10.1016/j.compstruc.2014.10.005 [16] SHABANA A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J]. Multibody System Dynamics, 1997, 1: 339-348. doi: 10.1023/A:1009740800463 [17] MATIKAINEN M K, DMITROCHENKO O, MIKKOLA A. Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation[C]//International Conference of Numerical Analysis and Applied Mathematics 2010 . Rhodes, Greece: AIP Publishing, 2010: 1266-1270. [18] LI P, GANTOI F M, SHABANA A A. Higher order representation of the beam cross section deformation in large displacement finite element analysis[J]. Journal of Sound and Vibration, 2011, 330(26): 6495-6508. doi: 10.1016/j.jsv.2011.07.013 [19] SHEN Z X, LI P, LIU C, et al. A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2014, 77(3): 1019-1033. doi: 10.1007/s11071-014-1360-y [20] EBEL H, MATIKAINEN M K, HURSKAINEN V V, et al. Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity[J]. Nonlinear Dynamics, 2017, 88(2): 1075-1091. doi: 10.1007/s11071-016-3296-x [21] 赵北, 熊斯浚, 陈亮, 等. 基于弹性边界的多墙式盒段结构复合材料壁板屈曲分析方法[J]. 应用数学和力学, 2024, 45(9): 1182-1199. doi: 10.21656/1000-0887.440283ZHAO Bei, XIONG Sijun, CHEN Liang, et al. A buckling analysis method for composite panels in multiweb box structures based on elastic boundaries[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1182-1199. (in Chinese) doi: 10.21656/1000-0887.440283 [22] SHEN Z. Thin-walled composite beam elementsvia the absolute nodal coordinate formulation[J]. Multibody System Dynamics, 2024, 62(1): 107-135. doi: 10.1007/s11044-023-09956-y -
下载:
渝公网安备50010802005915号