• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于绝对节点坐标法的高阶薄壁曲梁单元

吴明港 王玉凤 马喆 沈振兴

吴明港, 王玉凤, 马喆, 沈振兴. 基于绝对节点坐标法的高阶薄壁曲梁单元[J]. 应用数学和力学, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296
引用本文: 吴明港, 王玉凤, 马喆, 沈振兴. 基于绝对节点坐标法的高阶薄壁曲梁单元[J]. 应用数学和力学, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296
WU Minggang, WANG Yufeng, MA Zhe, SHEN Zhenxing. High-Order Thin-Walled Curved Beam Elements With the Absolute Nodal Coordinate Formulation[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296
Citation: WU Minggang, WANG Yufeng, MA Zhe, SHEN Zhenxing. High-Order Thin-Walled Curved Beam Elements With the Absolute Nodal Coordinate Formulation[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296

基于绝对节点坐标法的高阶薄壁曲梁单元

doi: 10.21656/1000-0887.450296
基金项目: 

国家自然科学基金 11702241

河北省自然科学基金 A2021203011

详细信息
    作者简介:

    吴明港(1997—),男,博士生(E-mail: ruopeng@stumail.ysu.edu.cn)

    王玉凤(1999—),女,硕士生(E-mail: www18237298382@163.com)

    马喆(1999—),男,硕士生(E-mail: mazhemax@foxmail.com)

    通讯作者:

    沈振兴(1985—),男,副教授,博士,博士生导师(通讯作者. E-mail: shenzx@ysu.edu.cn)

  • 中图分类号: O331

High-Order Thin-Walled Curved Beam Elements With the Absolute Nodal Coordinate Formulation

  • 摘要: 薄壁曲梁的截面易出现畸变和翘曲现象,为了能够描述其在大转动、大变形情况下的截面变形行为,提出了一种基于绝对节点坐标法的高阶梁单元. 借鉴Taylor级数展开模式构建了全局位置矢量场,通过增加单元横向节点的方式,避免了高阶导数几何意义不明确带来的困扰. 基于非线性连续介质力学理论和坐标变换策略,推导了薄壁曲梁单元的广义弹性力表达式. 通过与有限元软件中的薄壳单元进行比较,验证了该薄壁梁单元的准确性.
  • 图  1  薄壁曲梁上任意一点的位置矢量和薄壁曲梁的正交曲线坐标系

    Figure  1.  The position vector of any point on a thin-walled curved beam and the orthogonal curve coordinate system of the thin-walled curved beam

    图  2  前八阶梁单元的节点位置坐标

    Figure  2.  The nodal position coordinates of the first eight-order beam elements

    图  3  薄壁矩形截面悬臂梁的形状示意图及其模态振型

    Figure  3.  Schematic diagram of a cantilever beam with a thin-walled rectangle cross-section and its modes

    图  4  薄壁矩形截面悬臂梁的形状及其变形应力图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Shape of a cantilever beam with thin-walled rectangular cross-section and deformation stresses

    图  5  集中力作用下梁截面的变形

    Figure  5.  The cross-sectional beam deformation under the concentrated force

    图  6  三角形截面梁受力示意图及其面外翘曲变形

    Figure  6.  A beam with a triangular cross section under a force couple and its warping deformation

    图  7  不同截面梁单摆分析图

    Figure  7.  The analytical diagram of a single pendulum featuring beams with varying cross-sectional geometry

    图  8  正交各向异性薄壁曲梁的形状及其变形图

    Figure  8.  The orthogonal anisotropic thin-walled curved beam shape and the deformation diagram

    表  1  薄壁矩形截面梁的固有频率(误差)(单位:Hz)

    Table  1.   Frequencies (errors) of the beam with a thin-walled rectangular cross-section (unit: Hz)

    kth-order 1st sweeping 1st flapping 2nd sweeping 2nd flapping 1st torsion 2nd torsion
    1 46.14(27.1%) 49.73(22.4%) 220.61(26.2%) 236.81(22.7%) 1 251.57(25.6%) 1 435.59(23.2%)
    2 41.57(14.5%) 42.89(5.6%) 198.13(13.39%) 204.80(6.1%) 1 138.61(14.31%) 1 259.76(8.1%)
    3 39.74(9.4%) 41.72(2.7%) 186.37(6.6%) 194.81(0.9%) 1 098.45(10.28%) 1 195.15(2.5%)
    4 38.62(6.3%) 40.41(0.5%) 180.48(3.2%) 191.69(0.6%) 1 065.15(6.9%) 1 185.06(1.7%)
    ABAQUS 36.30 40.62 174.73 192.95 966.04 1 165.10
    下载: 导出CSV
  • [1] VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Buckling of thin-walled structures through a higher order beam model[J]. Computers and Structures, 2017, 180: 104-116. doi: 10.1016/j.compstruc.2016.01.005
    [2] YANG Y B, MO X Q, SHI K, et al. Effect of damping on torsional-flexural frequencies of monosymmetric thin-walled beams scanned by moving vehicles[J]. Thin-Walled Structures, 2024, 198: 111633. doi: 10.1016/j.tws.2024.111633
    [3] YUAN J R, DING H. Three-dimensional dynamic model of the curved pipe based on the absolute nodal coordinate formulation[J]. Mechanical Systems and Signal Processing, 2023, 194: 110275. doi: 10.1016/j.ymssp.2023.110275
    [4] YANG Y B, KUO S R. Effect of curvature on stability of curved beams[J]. Journal of Structural Engineering, 1987, 113(6): 1185-1202. doi: 10.1061/(ASCE)0733-9445(1987)113:6(1185)
    [5] CHOI S, KIM Y Y. Higher-order Vlasov torsion theory for thin-walled box beams[J]. International Journal of Mechanical Sciences, 2021, 195: 106231. doi: 10.1016/j.ijmecsci.2020.106231
    [6] YOON K Y, PARK N H, CHOI Y J, et al. Natural frequencies of thin-walled curved beams[J]. Finite Elements in Analysis and Design, 2006, 42(13): 1176-1186. doi: 10.1016/j.finel.2006.05.002
    [7] CAI Y, CHEN H J, LV X Y, et al. Dynamic response of a thin-walled curved beam with a mono-symmetric cross-section under a moving mass[J]. Thin-Walled Structures, 2023, 189: 110941. doi: 10.1016/j.tws.2023.110941
    [8] PARK S K, GAO X L. Bernoulli-Euler beam model based on a modified couple stress theory[J]. Journal of Micromechanics and Microengineering, 2006, 16(11): 2355-2359. doi: 10.1088/0960-1317/16/11/015
    [9] 赵翔, 孟诗瑶. 基于Green函数分析Euler-Bernoulli双曲梁系统的受迫振动[J]. 应用数学和力学, 2023, 44(2): 168-177. doi: 10.21656/1000-0887.430298

    ZHAO Xiang, MENG Shiyao. Forced vibration analysis of Euler-bernoulli double-beam systems by means of Green's functions[J]. Applied Mathematics and Mechanics, 2023, 44(2): 168-177. (in Chinese) doi: 10.21656/1000-0887.430298
    [10] MANTA D, GONÇALVES R. A geometrically exact Kirchhoff beam model including torsion warping[J]. Computers & Structures, 2016, 177: 192-203.
    [11] 卓英鹏, 王刚, 齐朝晖, 等. 节点参数含应变的空间几何非线性样条梁单元[J]. 应用数学和力学, 2022, 43(9): 987-1003. doi: 10.21656/1000-0887.420290

    ZHUO Yingpeng, WANG Gang, QI Zhaohui, et al. A spatial geometric nonlinearity spline beam element with nodal parameters containing strains[J]. Applied Mathematics and Mechanics, 2022, 43(9): 987-1003. (in Chinese) doi: 10.21656/1000-0887.420290
    [12] SCHARDT R. Generalized beam theory: an adequate method for coupled stability problems[J]. Thin-Walled Structures, 1994, 19(2/3/4): 161-180.
    [13] KIM H, JANG G W. Higher-order thin-walled beam analysis for axially varying generally shaped cross sections with straight cross-section edges[J]. Computers & Structures, 2017, 189: 83-100.
    [14] VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. A higher order thin-walled beam model including warping and shear modes[J]. International Journal of Mechanical Sciences, 2013, 66: 67-82. doi: 10.1016/j.ijmecsci.2012.10.009
    [15] VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Definition of warping modes within the context of a higher order thin-walled beam model[J]. Computers and Structures, 2015, 147: 68-78. doi: 10.1016/j.compstruc.2014.10.005
    [16] SHABANA A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J]. Multibody System Dynamics, 1997, 1: 339-348. doi: 10.1023/A:1009740800463
    [17] MATIKAINEN M K, DMITROCHENKO O, MIKKOLA A. Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation[C]//International Conference of Numerical Analysis and Applied Mathematics 2010 . Rhodes, Greece: AIP Publishing, 2010: 1266-1270.
    [18] LI P, GANTOI F M, SHABANA A A. Higher order representation of the beam cross section deformation in large displacement finite element analysis[J]. Journal of Sound and Vibration, 2011, 330(26): 6495-6508. doi: 10.1016/j.jsv.2011.07.013
    [19] SHEN Z X, LI P, LIU C, et al. A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2014, 77(3): 1019-1033. doi: 10.1007/s11071-014-1360-y
    [20] EBEL H, MATIKAINEN M K, HURSKAINEN V V, et al. Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity[J]. Nonlinear Dynamics, 2017, 88(2): 1075-1091. doi: 10.1007/s11071-016-3296-x
    [21] 赵北, 熊斯浚, 陈亮, 等. 基于弹性边界的多墙式盒段结构复合材料壁板屈曲分析方法[J]. 应用数学和力学, 2024, 45(9): 1182-1199. doi: 10.21656/1000-0887.440283

    ZHAO Bei, XIONG Sijun, CHEN Liang, et al. A buckling analysis method for composite panels in multiweb box structures based on elastic boundaries[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1182-1199. (in Chinese) doi: 10.21656/1000-0887.440283
    [22] SHEN Z. Thin-walled composite beam elementsvia the absolute nodal coordinate formulation[J]. Multibody System Dynamics, 2024, 62(1): 107-135. doi: 10.1007/s11044-023-09956-y
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  21
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2025-01-06
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回