• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均匀热流作用下考虑表面效应的非圆形纳米孔的级数解

张雨 赵婕燕 杨海兵

张雨, 赵婕燕, 杨海兵. 均匀热流作用下考虑表面效应的非圆形纳米孔的级数解[J]. 应用数学和力学, 2026, 47(1): 79-89. doi: 10.21656/1000-0887.450308
引用本文: 张雨, 赵婕燕, 杨海兵. 均匀热流作用下考虑表面效应的非圆形纳米孔的级数解[J]. 应用数学和力学, 2026, 47(1): 79-89. doi: 10.21656/1000-0887.450308
ZHANG Yu, ZHAO Jieyan, YANG Haibing. Series Solutions for Non-Circular Nanoholes With Surface Effects Under Uniform Heat Flux[J]. Applied Mathematics and Mechanics, 2026, 47(1): 79-89. doi: 10.21656/1000-0887.450308
Citation: ZHANG Yu, ZHAO Jieyan, YANG Haibing. Series Solutions for Non-Circular Nanoholes With Surface Effects Under Uniform Heat Flux[J]. Applied Mathematics and Mechanics, 2026, 47(1): 79-89. doi: 10.21656/1000-0887.450308

均匀热流作用下考虑表面效应的非圆形纳米孔的级数解

doi: 10.21656/1000-0887.450308
基金项目: 

国家自然科学基金 11902116

广东省自然科学基金 2022A1515011773

详细信息
    作者简介:

    张雨(2001—),男,硕士生(E-mail: gorain2526@163.com)

    通讯作者:

    杨海兵(1988—),男,副教授,博士(通信作者. E-mail: yanghb@hhu.edu.cn)

  • 中图分类号: O39

Series Solutions for Non-Circular Nanoholes With Surface Effects Under Uniform Heat Flux

  • 摘要: 该文研究了均匀远场热流作用下单个非圆形纳米孔的二维平面问题.为考察微观尺度下表面声子散射对热传导的影响,该文引入了考虑温度跳跃的弱热传导模型,并利用完整的Gurtin-Murdoch低阶表面能模型来表征表面效应的影响.基于复变函数理论和级数展开,通过保角映射技术定义了纳米孔的几何形状,从而得到了不同孔型对应的温度场和热应力场的级数解.通过对一些非圆形纳米孔的数值算例进行分析,研究了表面效应对热应力场的影响.结果表明:考虑表面效应将显著增加纳米孔附近的热应力,并且表面弹性和表面张力的共同作用在决定热应力大小中起到了关键作用.
  • 图  1  含非圆形纳米孔洞的无限基体

    Figure  1.  An infinite matrix containing a non-circular nanohole

    图  2  本篇工作与前人工作的对比

    Figure  2.  Comparison of this work with previous work

    图  3  表面张力和表面弹性对不同非圆形状孔洞的影响

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Influences of surface tension and surface elasticity on different non-circular nanoholes

    图  4  表面效应对非圆形纳米孔热应力分布的影响

    Figure  4.  Effects of surface properties on thermal stress distributions around non-circular nanoholes

    图  5  热流单独作用下非圆形纳米孔的热应力分布

    Figure  5.  Thermal stress distributions in non-circular nanoholes under heat flux

    图  6  表面张力和表面弹性之和恒定时不同非圆孔洞的应力的变化

    Figure  6.  Variations in different non-circular holes under the same sum of surface tension and surface elasticity

  • [1] LI Z R, HU N, FAN L W. Nanocomposite phase change materials for high-performance thermal energy storage: a critical review[J]. Energy Storage Materials, 2023, 55 : 727-753. doi: 10.1016/j.ensm.2022.12.037
    [2] CAMMARATA R C, SIERADZKI K. Effects of surface stress on the elastic moduli of thin films and superlattices[J]. Physical Review Letters, 1989, 62(17): 2005-2008. doi: 10.1103/PhysRevLett.62.2005
    [3] FARTASH A, FULLERTON E E, SCHULLER I K, et al. Evidence for the supermodulus effect and enhanced hardness in metallic superlattices[J]. Physical Review B, 1991, 44(24): 13760-13763. doi: 10.1103/PhysRevB.44.13760
    [4] STREITZ F H, CAMMARATA R C, SIERADZKI K. Surface-stress effects on elastic properties, Ⅱ: metallic multilayers[J]. Physical Review B, 1994, 49(15): 10707-10716. doi: 10.1103/PhysRevB.49.10707
    [5] WHITTAKER E T, GIBBS J W. The scientific papers of J. Willard Gibbs[J]. The Mathematical Gazette, 1907, 4(64): 87.
    [6] GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323. doi: 10.1007/BF00261375
    [7] CAI B, WEI P. Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers[J]. Acta Mechanica, 2013, 224(11): 2749-2758. doi: 10.1007/s00707-013-0886-2
    [8] WEI Q, ZHU W, XIANG J, et al. Effect of surface/interface stress on nanoscale phononic crystals using complete Gurtin-Murdoch model[J]. Engineering Analysis With Boundary Elements, 2024, 158 : 22-32. doi: 10.1016/j.enganabound.2023.10.016
    [9] 冯国益, 肖俊华, 苏梦雨. 考虑表面效应时孔边均布径向多裂纹Ⅲ型断裂力学分析[J]. 应用数学和力学, 2020, 41(4): 376-385. doi: 10.21656/1000-0887.400177

    FENG Guoyi, XIAO Junhua, SU Mengyu. Fracture mechanics analysis of mode-Ⅲ radial multi cracks on the edge of a hole with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(4): 376-385. (in Chinese) doi: 10.21656/1000-0887.400177
    [10] 黄汝超, 陈永强. 残余界面应力对粒子填充热弹性纳米复合材料有效热膨胀系数的影响[J]. 应用数学和力学, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003

    HUANG Ruchao, CHEN Yongqiang. Effects of residual interface stress on effective thermal expansion coefficient of particle-filled composite[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1283-1293. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.11.003
    [11] CAMMARATA R C. Surface and interface stress effects in thin films[J]. Progress in Surface Science, 1994, 46(1): 1-38.
    [12] STEIGMANN D J, OGDEN R W. Elastic surface: substrate interactions[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 455(1982): 437-474. doi: 10.1098/rspa.1999.0320
    [13] CHAO C K, SHEN M H. On bonded circular inclusions in plane thermoelasticity[J]. Journal of Applied Mechanics, 1997, 64(4): 1000. doi: 10.1115/1.2788962
    [14] CHAO C K, SHEN M H. Thermalstresses in a generally anisotropic body with an elliptic inclusion subject to uniform heat flow[J]. Journal of Applied Mechanics, 1998, 65(1): 51. doi: 10.1115/1.2789045
    [15] TANG J Y, YANG H B. An alternative numerical scheme for calculating the thermal stresses around an inclusion of arbitrary shape in an elastic plane under uniform remote in-plane heat flux[J]. Acta Mechanica, 2019, 230(7): 2399-2412. doi: 10.1007/s00707-019-02388-w
    [16] TIAN L, RAJAPAKSE R K N D. Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity[J]. Journal of Applied Mechanics, 2007, 74(3): 568-574. doi: 10.1115/1.2424242
    [17] DAI M, GHARAHI A, SCHIAVONE P. Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations[J]. Applied Mathematical Modelling, 2018, 55 : 160-170. doi: 10.1016/j.apm.2017.10.028
    [18] DAI M, GAO C F, SCHIAVONE P. Closed-form solution for a circular nano-inhomogeneity with interface effects in an elastic plane under uniform remote heat flux[J]. IMA Journal of Applied Mathematics, 2017, 82(2): 384-395.
    [19] TANG J, ZHAO J, YANG H, et al. Closed-form solution for a circular nanohole with surface effects under uniform heat flux[J]. Acta Mechanica Solida Sinica, 2024, 37(1): 43-52. doi: 10.1007/s10338-023-00435-7
    [20] 赵婕燕, 杨海兵. 表面效应对热电材料中纳米孔周围热应力的影响[J]. 应用数学和力学, 2023, 44(11): 1311-1324. doi: 10.21656/1000-0887.440151

    ZHAO Jieyan, YANG Haibing. Surface effects on thermal stresses around the nanohole in thermoelectric material[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1311-1324. (in Chinese) doi: 10.21656/1000-0887.440151
    [21] SONG K, YIN D, SCHIAVONE P. Effect of surface phonon scattering on thermal stress around small-scale elliptic holes in a thermoelectric material[J]. Journal of Thermal Stresses, 2021, 44(2): 149-162. doi: 10.1080/01495739.2020.1838248
    [22] MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Dordrecht: Springer Netherlands, 1977.
    [23] GHAZANFARIAN J, ABBASSI A. Effect of boundary phonon scattering on Dual-Phase-Lag model to simulate micro- and nano-scale heat conduction[J]. International Journal of Heat and Mass Transfer, 2009, 52(15/16): 3706-3711.
    [24] SONG K, SCHIAVONE P. Thermally neutral nano-hole and its effect on the elastic field[J]. European Journal of Mechanics A: Solids, 2020, 81 : 103973. doi: 10.1016/j.euromechsol.2020.103973
    [25] DAI M, LI M, SCHIAVONE P. Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model[J]. Journal of Applied Mechanics, 2018, 85(12): 121010. doi: 10.1115/1.4041469
    [26] DAI M, WANG Y J, SCHIAVONE P. Integral-type stress boundary condition in the complete Gurtin-Murdoch surface model with accompanying complex variable representation[J]. Journal of Elasticity, 2019, 134(2): 235-241. doi: 10.1007/s10659-018-9695-0
    [27] SAVIN G N. Stress concentration around holes[J]. Journal of the Royal Aeronautical Society, 1961, 65(611): 772.
    [28] MILLER R E, SHENOY V B. Size-dependent elastic properties of nanosized structural elements[J]. Nanotechnology, 2000, 11(3): 139-147. doi: 10.1088/0957-4484/11/3/301
    [29] ZHANG R, TANG J Y, QIU J, et al. Role of interface tension in the thermoelastic analysis of inclusions: unified formulation and closed-form results[J]. Journal of Thermal Stresses, 2024, 47(2): 240-249. doi: 10.1080/01495739.2023.2256813
  • 加载中
图(6)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  40
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-02-26
  • 刊出日期:  2026-01-01

目录

    /

    返回文章
    返回