留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有效悬浮功理论下小浪底库区异重流运动特征

李彬 万占伟 高兴 李树森 白玉川 鲁俊

李彬, 万占伟, 高兴, 李树森, 白玉川, 鲁俊. 基于有效悬浮功理论下小浪底库区异重流运动特征[J]. 应用数学和力学, 2025, 46(9): 1218-1232. doi: 10.21656/1000-0887.450322
引用本文: 李彬, 万占伟, 高兴, 李树森, 白玉川, 鲁俊. 基于有效悬浮功理论下小浪底库区异重流运动特征[J]. 应用数学和力学, 2025, 46(9): 1218-1232. doi: 10.21656/1000-0887.450322
LI Bin, WAN Zhanwei, GAO Xing, LI Shusen, BAI Yuchuan, LU Jun. Characteristics of Turbidity Currents in the Xiaolangdi Reservoir Considering Sediment Effective Power[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1218-1232. doi: 10.21656/1000-0887.450322
Citation: LI Bin, WAN Zhanwei, GAO Xing, LI Shusen, BAI Yuchuan, LU Jun. Characteristics of Turbidity Currents in the Xiaolangdi Reservoir Considering Sediment Effective Power[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1218-1232. doi: 10.21656/1000-0887.450322

基于有效悬浮功理论下小浪底库区异重流运动特征

doi: 10.21656/1000-0887.450322
基金项目: 

“十四五”国家重点研发计划课题 2023YFC3206703

国家自然科学基金 51979185

黄委优秀人才科技项目 HQK-202319

详细信息
    作者简介:

    李彬(1994—),男,工程师,博士(E-mail: Libin0425@tju.edu.cn)

    通讯作者:

    高兴(1990—),男,工程师,硕士(通讯作者. E-mail: 2408177451@qq.com)

  • 中图分类号: TV145+.2

Characteristics of Turbidity Currents in the Xiaolangdi Reservoir Considering Sediment Effective Power

  • 摘要:

    水库异重流对提高水库运用效益、高效排沙以及延长水库生命周期具有重要意义,是多沙河流水库调水调沙的重要内容. 为探究水库异重流运动特征,建立了异重流控制方程,结合有效悬浮功理论与异重流自相似理论,以小浪底水库为对象分析水库异重流运动特征. 研究结果表明:小浪底水库异重流运动存在消亡、自悬浮、激励状态. 异重流沿程演化存在临界位置x0c. 在x0c上游,异重流厚度、含沙量与流速对粒径、坡降、阻力系数变化响应较小;异重流厚度在x0c下游随粒径、坡降、阻力系数增加而增加. 粒径增大/减小会使异重流从激励状态向消亡/自悬浮状态转变. 当坡降大于临界坡降时,异重流向激励状态转变;当阻力系数大于临界阻力系数时,异重流向消亡状态转变,小于临界阻力系数时异重流保持原有状态. 随着潜入点处Richardson数减小,异重流厚度在x0c下游增长速率降低、异重流稳定性减弱、异重流向消亡状态转变,在激励状态下异重流流速在x0c下游流速增加. 研究成果对揭示水库异重流运动特征提供了理论支持,为多沙河流水库调水调沙期间调度方案制定提供了理论依据.

  • 图  1  异重流流速、含沙量、湍动能分布示意图[24, 27]

    Figure  1.  Schematic of the velocity, sediment concentration, and turbulent kinetic energy of the turbidity current[24, 27]

    图  2  悬移质有效悬浮功示意图[19-20]

    Figure  2.  Schematic of the sediment effective power of suspended sediment[19-20]

    图  3  水槽与结果验证

    Figure  3.  The flume and calculation results verification

    图  4  不同粒径下异重流运动特征结果验证

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Validation of turbidity current characteristics under different particle sizes

    图  5  不同年份小浪底水库异重流实测结果与理论结果对比

    Figure  5.  Comparison of measured and theoretical results of turbidity currents in Xiaolangdi Reservoir in different years

    图  6  粒径对异重流运动过程中厚度、含沙量和流速的影响

    Figure  6.  The effects of particle sizes on the layer depths, sediment concentrations and velocities in the turbidity currents evolution

    图  7  坡降对异重流运动过程中的厚度、含沙量以及流速影响

    Figure  7.  The effects of bed slopes on the layer depths, sediment concentrations, and velocities in the turbidity currents evlution

    图  8  阻力系数对异重流运动过程中的厚度、含沙量以及流速影响

    Figure  8.  The effects of friction coefficients on the layer depths, sediment concentrations and velocities in the turbidity currents evdution

    图  9  初始状态对异重流运动过程中的厚度、含沙量以及流速影响

    Figure  9.  The effects of initial states on the evolutions of the layer depths, sediment concentrations, and velocities of the turbidity currents

  • [1] 张燕, 王道增, 樊靖郁. 流动环境中高浓度射流扩散实验研究[J]. 应用数学和力学, 2002, 23(12): 1276-1282. http://www.applmathmech.cn/article/id/1688

    ZHANG Yan, WANG Daozeng, FAN Jingyu. Experimental investigations on diffusion characteristics of high concentration jets in environmental currents[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1276-1282. (in Chinese) http://www.applmathmech.cn/article/id/1688
    [2] 林建忠, 周泽宣. 含高浓度悬浮固粒运动射流稳定性研究[J]. 应用数学和力学, 2000, 21(12): 1255-1264. http://www.applmathmech.cn/article/id/2033

    LIN Jianzhong, ZHOU Zexuan. Research on stability of moving jet containing dense suspended solid particles[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1255-1264. (in Chinese) http://www.applmathmech.cn/article/id/2033
    [3] 周泽宣, TAN S K, 林建忠. 含悬浮固粒射流界面稳定性研究[J]. 应用数学和力学, 2000, 21(7): 669-674. http://www.applmathmech.cn/article/id/2105

    ZHOU Zexuan, TAN S K, LIN Jianzhong. Research on stability of interface of jet containing suspended solid particles[J]. Applied Mathematics and Mechanics, 2000, 21(7): 669-674. (in Chinese) http://www.applmathmech.cn/article/id/2105
    [4] 白玉川, 辛玮琰, 徐海珏. 三角洲初始段射流边界层相似解求解[J]. 应用数学和力学, 2020, 41(9): 1011-1025. doi: 10.21656/1000-0887.400364

    BAI Yuchuan, XIN Weiyan, XU Haijue. Similarity solution of jet boundary layer for the initial segment of a delta[J]. Applied Mathematics and Mechanics, 2020, 41(9): 1011-1025. (in Chinese) doi: 10.21656/1000-0887.400364
    [5] 章若茵, 吴保生. 水库异重流的三维数值模拟及影响因素分析[J]. 水利学报, 2020, 51(6): 715-726.

    ZHANG Ruoyin, WU Baosheng. Three-dimensional numerical simulation of density current on a slope and its influencing factors[J]. Journal of Hydraulic Engineering, 2020, 51(6): 715-726. (in Chinese)
    [6] 张俊华, 马怀宝, 夏军强, 等. 小浪底水库异重流高效输沙理论与调控[J]. 水利学报, 2018, 49(1): 62-71.

    ZHANG Junhua, MA Huaibao, XIA Junqiang, et al. Theory and regulation of sediment turbidity current venting with high efficiency in Xiaolangdi Reservoir[J]. Journal of Hydraulic Engineering, 2018, 49(1): 62-71. (in Chinese)
    [7] 夏润亮, 李涛, 余欣, 等. 小浪底水库"腾库迎洪" 期异重流形成分析[J]. 水科学进展, 2020, 31(2): 184-193.

    XIA Runliang, LI Tao, YU Xin, et al. Analysis of the formation of density current in the period of discharging before flood in Xiaolangdi Reservoir[J]. Advances in Water Science, 2020, 31(2): 184-193. (in Chinese)
    [8] 张俊华, 李涛, 马怀宝. 小浪底水库调水调沙研究新进展[J]. 泥沙研究, 2016(2): 68-75.

    ZHANG Junhua, LI Tao, MA Huaibao. Proceedings on water and sediment regulation in Xiaolangdi Reservoir[J]. Journal of Sediment Research, 2016(2): 68-75. (in Chinese)
    [9] 张金良, 鲁俊, 韦诗涛, 等. 小浪底水库调水调沙后续动力不足原因和对策[J]. 人民黄河, 2021, 43(1): 5-9.

    ZHANG Jinliang, LU Jun, WEI Shitao, et al. Causes and countermeasures of insufficient follow-up power for waterand sediment regulation in Xiaolangdi Reservoir[J]. Yellow River, 2021, 43(1): 5-9. (in Chinese)
    [10] 韩其为. 水库淤积[M]. 北京: 科学出版社, 2003.

    HAN Qiwei. Reservoir Sedimentation[M]. Beijing: Science Press, 2003. (in Chinese)
    [11] 朱鹏程. 异重流的形成与衰减[J]. 水利学报, 1981(5): 52-59.

    ZHU Pengcheng. Formation and attenuation of turbidity currents[J]. Journal of Hydraulic Engineering, 1981(5): 52-59. (in Chinese)
    [12] MIDDLETON G V. Sediment deposition from turbidity currents[J]. Annual Review of Earth and Planetary Sciences, 1993, 21 : 89-114. doi: 10.1146/annurev.ea.21.050193.000513
    [13] 曹如轩, 任晓枫, 卢文新. 高含沙异重流的形成与持续条件分析[J]. 泥沙研究, 1984(2): 1-10.

    CAO Ruxuan, REN Xiaofeng, LU Wenxin. Analysis of conditions of formation and continuation of motion of density current with hyperconcentration[J]. Journal of Sediment Research, 1984(2): 1-10. (in Chinese)
    [14] 范家骅, 祁伟, 戴清. 异重流潜入现象探讨Ⅰ: 水槽实验与理论分析成果回顾[J]. 水利学报, 2018, 49(4): 404-418.

    FAN Jiahua, QI Wei, DAI Qing. Investigation of density current plunging Ⅰ: review of previous flume experiment works and theoretical analysis[J]. Journal of Hydraulic Engineering, 2018, 49(4): 404-418. (in Chinese)
    [15] 钱宁, 范家骅, 曹俊, 等. 异重流[M]. 北京: 水利出版社, 1957.

    QIAN Ning, FAN Jiahua, CAO Jun, et al. Turbidity[M]. Beijing: Water Resources Press, 1957. (in Chinese)
    [16] 李涛, 夏军强, 张俊华, 等. 水库异重流潜入点流速分布及其判别式改进[J]. 工程科学与技术, 2017, 49(2): 62-68.

    LI Tao, XIA Junqiang, ZHANG Junhua, et al. Vertical velocity distribution and improved discriminant formula of turbidity current at the plunging point in reservoir[J]. Advanced Engineering Sciences, 2017, 49(2): 62-68. (in Chinese)
    [17] PARKER G, GARCIA M, FUKUSHIMA Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147. doi: 10.1080/00221688709499292
    [18] PARKER G, FUKUSHIMA Y, PANTIN H M. Self-accelerating turbidity currents[J]. Journal of Fluid Mechanics, 1986, 171 : 145-181. doi: 10.1017/S0022112086001404
    [19] WANG S Y. The principle and application of sediment effective power[J]. Journal of Hydraulic Engineering, 1984, 110(2): 97-107. doi: 10.1061/(ASCE)0733-9429(1984)110:2(97)
    [20] 王尚毅. 论挟沙明流中泥沙的有效悬浮功概念兼论区分造床质与非造床质的标准问题[J]. 科学通报, 1979, 24(9): 410-413.

    WANG Shangyi. On the concept of sediment effective power in suspended-laden flows and the standard distinction between bed-material load and wash load[J]. Chinese Science Bulletin, 1979, 24(9): 410-413. (in Chinese)
    [21] BAGNOLD R A. Auto-suspension of transported sediment; turbidity currents[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1962, 265(1322): 315-319. doi: 10.1098/rspa.1962.0012
    [22] XIE J, HU P, ZHU C, et al. Turbidity currents propagating down an inclined slope: particle auto-suspension[J]. Journal of Fluid Mechanics, 2023, 954: A44. doi: 10.1017/jfm.2022.1041
    [23] AKIYAMA J, STEFAN H. Turbidity current with erosion and deposition[J]. Journal of Hydraulic Engineering, 1985, 111(12): 1473-1496. doi: 10.1061/(ASCE)0733-9429(1985)111:12(1473)
    [24] CANTERO-CHINCHILLA F N, DEY S, CASTRO-ORGAZ O, et al. Hydrodynamic analysis of fully developed turbidity currents over plane beds based on self-preserving velocity and concentration distributions[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(10): 2176-2199. doi: 10.1002/2015JF003685
    [25] ISLAM M A, IMRAN J. Vertical structure of continuous release saline and turbidity currents[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08025.
    [26] GRAF W H, ALTINAKAR M S. Fluvial Hydraulics: Flow and Transport Processes in Channels of Simple Geometry[M]. New York: Wiley, 1998.
    [27] MAHATO R K, DEY S, ALI S Z. Hydrodynamics of turbidity currents evolving over a plane bed[J]. Physics of Fluids, 2023, 35(10): 105137. doi: 10.1063/5.0169802
    [28] JIMÉNEZ J A, MADSEN O S. A simple formula to estimate settling velocity of natural sediments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2003, 129(2): 70-78. doi: 10.1061/(ASCE)0733-950X(2003)129:2(70)
    [29] TALLING P J, CARTIGNY M J B, POPE E, et al. Detailed monitoring reveals the nature of submarine turbidity currents[J]. Nature Reviews Earth & Environment, 2023, 4 : 642-658.
    [30] 江肖鹏, 王远见, 杨飞, 等. 水沙自加速异重流水槽试验研究[J]. 人民黄河, 2023, 45(2): 38-41.

    JIANG Xiaopeng, WANG Yuanjian, YANG Fei, et al. Experimental study on self-accelerating turbidity currents in flume[J]. Yellow River, 2023, 45(2): 38-41. (in Chinese)
    [31] 鲁俊, 朱呈浩, 陈翠霞, 等. 古贤和小浪底水库联合调水调沙运用方式研究[J]. 人民黄河, 2024, 46(12): 31-36.

    LU Jun, ZHU Chenghao, CHEN Cuixia, et al. Research on the joint water and sediment regulation operation mode of Guxian Reservoir and Xiaolangdi Reservoir[J]. Yellow River, 2024, 46(12): 31-36. (in Chinese)
    [32] 李宪栋, 刘士祥, 刘哲杰. 小浪底水库2021—2023年排沙过程分析[J]. 人民黄河, 2024, 46(S1): 11-12.

    LI Xiandong, LIU Shixiang, LIU Zhejie. Analysis of sedimentation process in Xiaolangdi Reservoir from 2021 to 2023[J]. Yellow River, 2024, 46(S1): 11-12. (in Chinese)
    [33] 夏军强, 张贤梓依, 王增辉, 等. 小浪底水库汛前调水调沙模拟与综合效益评估[J]. 湖泊科学, 2024, 36(5): 1550-1561.

    XIA Junqiang, ZHANG Xianziyi, WANG Zenghui, et al. Modelling of the flow and sediment regulation processes before flood seasons in the Xiaolangdi Reservoir and evaluation of comprehensive benefits[J]. Journal of Lake Sciences, 2024, 36(5): 1550-1561. (in Chinese)
    [34] 王婷, 赵东晓, 马怀宝, 等. 小浪底水库减淤调度模式探讨[J]. 人民黄河, 2024, 46(8): 26-30.

    WANG Ting, ZHAO Dongxiao, MA Huaibao, et al. Discussion on the operational mode of sedimentation reduction of Xiaolangdi Reservoir[J]. Yellow River, 2024, 46(8): 26-30. (in Chinese)
    [35] 邵学军, 杨飞, 假冬冬, 等. 水库泥沙的高效输移机制及其动态调控[M]. 北京: 科学出版社, 2024.

    SHAO Xuejun, YANG Fei, JIA Dongdong, et al. Efficient Transport Mechanism and Dynamic Regulation of Reservoir Sediments[M]. Beijing: Science Press, 2024. (in Chinese)
    [36] GWIAZDA R, PAULL C K, KIEFT B, et al. Near-bed structure of sediment gravity flows measured by motion-sensing "boulder-like" benthic event detectors (BEDs) in Monterey canyon[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(2): e2021JF006437. doi: 10.1029/2021JF006437
    [37] MCARTHUR A D, TEK D E, POYATOS-MORÉ M, et al. Deep-ocean channel-wall collapse order of magnitude larger than any other documented[J]. Communications Earth & Environment, 2024, 5: 143.
    [38] NORMANDEAU A, LAJEUNESSE P, GHIENNE J F, et al. Detailed seafloor imagery of turbidity current bedforms reveals new insight into fine-scale near-bed processes[J]. Geophysical Research Letters, 2022, 49(11): e2021GL097389. doi: 10.1029/2021GL097389
    [39] RIBÓ M, MOUNTJOY J J, MITCHELL N, et al. New insights on gravity flow dynamics during submarine canyon flushing events[J]. Geology, 2025, 53(1): 34-39. doi: 10.1130/G52424.1
    [40] 温志超, 石林平, 黄哲, 等. 基于泥沙异重流稳定性与衰减过程的床面淤积特性研究[J]. 泥沙研究, 2024, 49(3): 33-40.

    WEN Zhichao, SHI Linping, HUANG Zhe, et al. Study on bed deposition characteristics based on the stability and decay processes of sediment density current[J]. Journal of Sediment Research, 2024, 49(3): 33-40. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  10
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 修回日期:  2025-02-10
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回