• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能梯度材料圆柱杆浸入流体中的横振动

聂千钧 李联和

聂千钧, 李联和. 功能梯度材料圆柱杆浸入流体中的横振动[J]. 应用数学和力学, 2026, 47(1): 46-56. doi: 10.21656/1000-0887.450327
引用本文: 聂千钧, 李联和. 功能梯度材料圆柱杆浸入流体中的横振动[J]. 应用数学和力学, 2026, 47(1): 46-56. doi: 10.21656/1000-0887.450327
NIE Qianjun, LI Lianhe. Transverse Vibration of Functionally Graded Material Cylinder Bars Dipped in Fluid[J]. Applied Mathematics and Mechanics, 2026, 47(1): 46-56. doi: 10.21656/1000-0887.450327
Citation: NIE Qianjun, LI Lianhe. Transverse Vibration of Functionally Graded Material Cylinder Bars Dipped in Fluid[J]. Applied Mathematics and Mechanics, 2026, 47(1): 46-56. doi: 10.21656/1000-0887.450327

功能梯度材料圆柱杆浸入流体中的横振动

doi: 10.21656/1000-0887.450327
基金项目: 

内蒙古自然科学基金 2023LHMS01017

内蒙古自然科学基金重点项目 2024ZD21

内蒙古自治区高校创新科研团队项目 NMGIRT2317

无穷维哈密顿系统及其算法应用教育部重点实验室开放课题 2023KFZD02

内蒙古自治区研究生科研创新基金 B20231057Z

详细信息
    作者简介:

    聂千钧(1998—),男,硕士生(E-mail: 370351273@qq.com)

    通讯作者:

    李联和(1978—),男,教授,博士,博士生导师(通信作者. E-mail: nmglilianhe@163.com)

  • 中图分类号: O34

Transverse Vibration of Functionally Graded Material Cylinder Bars Dipped in Fluid

  • 摘要: 基于一阶剪切变形理论(FSDT)和势流理论,对浸没于流体中的功能梯度材料(FGM)圆柱杆进行了横振动分析. 以径向梯度指标表征金属陶瓷杆的材料性能沿径向服从幂律分布,利用分离变量法求解柱坐标系下Laplace方程,确定了流体速度势和流体动力荷载;利用Hamilton原理推导了控制方程,通过多域GDQ方法离散控制方程,结合直接迭代法计算基频与模态振型,采用CEL仿真辅助验证数值结果. 通过参数化研究,评估了长径比、梯度指标、端部边界条件以及流体深度和密度等对FGM杆-流体相互作用系统横振动行为的影响.
  • 图  1  浸入流体的FGM圆柱杆的示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  The diagram of a FGM cylinder bar in fluid

    图  2  FGM杆横振动时自由端位移(a=1 m, n=0)

    Figure  2.  Displacements at the free end of the FGM bar in transverse vibration (a=1 m, n=0)

    图  3  FGM杆的密度(ρ/ρb)变化

    Figure  3.  The density (ρ/ρb) contour of FGM bar

    图  4  径向梯度n对FGM杆-流体相互作用系统基频的影响

    Figure  4.  Effects of radial gradient n on fundamental frequencies of the FGM bar-fluid interaction system

    图  5  长径比η对FGM杆-流体相互作用系统基频的影响

    Figure  5.  Effects of aspect ratio η on fundamental frequencies of the FGM bar-fluid interaction system

    图  6  流体密度ρf对FGM杆-流体相互作用系统基频的影响

    Figure  6.  Effects of fluid density ρf on fundamental frequencies of the FGM bar-fluid interaction system

    图  7  流体深度Lf对FGM杆-流体相互作用系统振动模态的影响

    Figure  7.  Effects of fluid depth Lf on fundamental frequencies of the FGM bar-fluid interaction system

    表  1  不同网格点数下FGM杆的基频(n=1)(单位: Hz)

    Table  1.   Fundamental frequencies of the FGM bar under different grid points (n=1)(unit: Hz)

    N C-C C-F
    Lf/L=0 Lf/L=0.5 Lf/L=1 Lf/L=0 Lf/L=0.5 Lf/L=1
    5 919.3 862.9 827.9 153.2 152.1 127.5
    7 942.9 886.9 819.9 155.1 154.2 137.0
    9 942.1 886.7 820.2 155.1 154.2 137.2
    11 942.1 886.8 820.2 155.1 154.2 137.3
    13 942.1 886.9 820.2 155.1 154.2 137.4
    15 942.1 886.8 820.2 155.1 154.2 137.3
    17 942.1 886.9 820.2 155.1 154.2 137.4
    下载: 导出CSV

    表  2  一端固支一端自由C-F FGM杆分别在真空和水中的基频(a=1 m, n=0)(单位: Hz)

    Table  2.   Fundamental frequencies of the C-F FGM bar in vacuum and in full contact with fluid (a=1 m, n=0)(unit: Hz)

    boundary condition method Lf/L=0 Lf/L=1 ratio of frequency in water to frequency in vacuum
    C-F ref. [33] 8.21 7.48 0.911 1
    this paper 8.28 7.37 0.890 1
    CEL simulation 8.17 7.25 0.887 4
    下载: 导出CSV
  • [1] LIU J, KE L L, WANG Y S, et al. Thermoelastic frictional contact of functionally graded materials with arbitrarily varying properties[J]. International Journal of Mechanical Sciences, 2012, 63(1): 86-98. doi: 10.1016/j.ijmecsci.2012.06.016
    [2] LEE H S, JEON K Y, KIM H Y, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science, 2000, 35(24): 6231-6236. doi: 10.1023/A:1026749831726
    [3] LIU B, WEI W, GAN Y, et al. Preparation, mechanical properties and microstructure of TiB2 based ceramic cutting tool material toughened by TiC whisker[J]. International Journal of Refractory Metals and Hard Materials, 2020, 93: 105372. doi: 10.1016/j.ijrmhm.2020.105372
    [4] KHAN S A, SCHULTHESS J L, CHARIT I, et al. Post-irradiation examination of UN-Mo-W fuels for space nuclear propulsion[J]. Journal of Nuclear Materials, 2025, 604: 155476. doi: 10.1016/j.jnucmat.2024.155476
    [5] YANG J, WU H, KITIPORNCHAI S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams[J]. Composite Structures, 2017, 161: 111-118. doi: 10.1016/j.compstruct.2016.11.048
    [6] 雷剑, 谢宇阳, 姚明格, 等. 变截面二维功能梯度微梁的振动和屈曲特性[J]. 应用数学和力学, 2022, 43(10): 1133-1145. doi: 10.21656/1000-0887.420323

    LEI Jian, XIE Yuyang, YAO Mingge, et al. Vibration and buckling characteristics of 2D functionally graded microbeams with variable cross sections[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1133-1145. (in Chinese) doi: 10.21656/1000-0887.420323
    [7] SHEN H S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments[J]. Composite Structures, 2009, 91(1): 9-19. doi: 10.1016/j.compstruct.2009.04.026
    [8] WU B, SU Y, LIU D, et al. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders[J]. Journal of Sound and Vibration, 2018, 421: 17-47. doi: 10.1016/j.jsv.2018.01.055
    [9] MAO J J, WANG Y J, ZHANG W, et al. Vibration and wave propagation in functionally graded beams with inclined cracks[J]. Applied Mathematical Modelling, 2023, 118: 166-184. doi: 10.1016/j.apm.2023.01.035
    [10] NEJATI M, FARD K M, ESLAMPANAH A, et al. Free vibration analysis of reinforced composite functionally graded plates with steady state thermal conditions[J]. Latin American Journal of Solids and Structures, 2017, 14(5): 886-905. doi: 10.1590/1679-78253705
    [11] 龚雪蓓, 赵伟东, 郭冬梅. 横向非均匀温度场作用的FGM夹层圆板热屈曲分析[J]. 应用数学和力学, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094

    GONG Xuebei, ZHAO Weidong, GUO Dongmei. Thermal buckling analysis of FGM sandwich circular plates under transverse nonuniform temperature field actions[J]. Applied Mathematics and Mechanics, 2023, 44(4): 419-430. (in Chinese) doi: 10.21656/1000-0887.430094
    [12] HOSSEINI-HASHEMI S, FADAEE M, ATASHIPOUR S R. A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates[J]. International Journal of Mechanical Sciences, 2011, 53(1): 11-22. doi: 10.1016/j.ijmecsci.2010.10.002
    [13] 张继超, 钟心雨, 陈一鸣, 等. 基于Hamilton体系的功能梯度矩形板自由振动问题的解析解[J]. 应用数学和力学, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279

    ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, et al. Hamiltonian system-based analytical solutions to free vibration problems of functionally graded rectangular plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. (in Chinese) doi: 10.21656/1000-0887.440279
    [14] OLSON D W, WOLF S F, HOOK J M. The Tacoma narrows bridge collapse[J]. Physics Today, 2015, 68(11): 64-65. doi: 10.1063/PT.3.2991
    [15] CAO Y, WU B, CARRERA E, et al. Axisymmetric vibration of multilayered electroactive circular plates in contact with fluid[J]. Journal of Sound and Vibration, 2024, 573: 118189. doi: 10.1016/j.jsv.2023.118189
    [16] JACOBSEN L S. Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindricalpier[J]. Bulletin of the Seismological Society of America, 1949, 39(3): 189-204. doi: 10.1785/BSSA0390030189
    [17] HOSSEINI-HASHEMI S, KARIMI M, ROKNI H. Natural frequencies of rectangular Mindlin plates coupled with stationary fluid[J]. Applied Mathematical Modelling, 2012, 36(2): 764-778. doi: 10.1016/j.apm.2011.07.007
    [18] KHORSHIDI K, AKBARI F, GHADIRIAN H. Experimental and analytical modal studies of vibrating rectangular plates in contact with a bounded fluid[J]. Ocean Engineering, 2017, 140: 146-154. doi: 10.1016/j.oceaneng.2017.05.017
    [19] ZHOU D, CHEUNG Y K. Vibration of vertical rectangular plate in contact with water on oneside[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 693-710.
    [20] Akbarov S D, Ismailov M I. Frequency response of a viscoelastic plate under compressible viscous fluid loading[J]. International Journal of Mechanics, 2014, 8: 332-344.
    [21] KOZLOVSKY Y. Vibration of plates in contact with viscous fluid: extension of Lamb's model[J]. Journal of Sound and Vibration, 2009, 326(1/2): 332-339.
    [22] HOSSEINI-HASHEMI S, ARPANAHI R A, RAHMANIAN S, et al. Free vibration analysis of nano-plate in viscous fluid medium using nonlocal elasticity[J]. European Journal of Mechanics A, 2019, 74: 440-448. doi: 10.1016/j.euromechsol.2019.01.002
    [23] JEONG K H, KIM K J. Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid[J]. Journal of Sound and Vibration, 2005, 283(1/2): 153-172.
    [24] ZHOU D, LIU W Q. Bending-torsion vibration of a partially submerged cylinder with an arbitrary cross-section[J]. Applied Mathematical Modelling, 2007, 31(10): 2249-2265. doi: 10.1016/j.apm.2006.08.011
    [25] ZHOU D. Vibration of uniform columns with arbitrarily shaped cross-sections partially submerged in water considering the effects of surface wave and compressibility of water[J]. Computers & Structures, 1993, 46(6): 1049-1054.
    [26] LIAO C Y, MA C C. Vibration characteristics of rectangular plate in compressible inviscid fluid[J]. Journal of Sound and Vibration, 2016, 362: 228-251. doi: 10.1016/j.jsv.2015.09.031
    [27] LI H C, KE L L, YANG J, et al. Free vibration of variable thickness FGM beam submerged in fluid[J]. Composite Structures, 2020, 233: 111582. doi: 10.1016/j.compstruct.2019.111582
    [28] LI H C, KE L L, WU Z M, et al. Free vibration of FGM Mindlin plates submerged in fluid[J]. Engineering Structures, 2022, 259: 114144. doi: 10.1016/j.engstruct.2022.114144
    [29] WU H, LI Y, LI L, et al. Free vibration analysis of functionally graded graphene nanocomposite beams partially in contact withfluid[J]. Composite Structures, 2022, 291: 115609. doi: 10.1016/j.compstruct.2022.115609
    [30] THINH T I, TU T M, VAN LONG N. Free vibration of a horizontal functionally graded rectangular plate submerged in fluid medium[J]. Ocean Engineering, 2020, 216: 107593. doi: 10.1016/j.oceaneng.2020.107593
    [31] 王乐, 王亮. 一种新的计算Timoshenko梁截面剪切系数的方法[J]. 应用数学和力学, 2013, 34(7): 756-763. doi: 10.3879/j.issn.1000-0887.2013.07.011

    WANG Le, WANG Liang. A new method of obtaining Timoshenko's shear coefficients[J]. Applied Mathematics and Mechanics, 2013, 34(7): 756-763. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.07.011
    [32] HAN R P S, XU H. A simple and accurate added mass model for hydrodynamic fluid: structure interaction analysis[J]. Journal of the Franklin Institute, 1996, 333(6): 929-945. doi: 10.1016/0016-0032(96)00043-9
    [33] HUANG X, EL BAROUDI A, WU B. Vibration properties of an elastic gold nanosphere submerged in viscoelastic fluid[J]. Modern Physics Letters B, 2023, 37(33): 2350174. doi: 10.1142/S0217984923501749
    [34] WU B, GAN Y, CARRERA E, et al. Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid[J]. Journal of Fluid Mechanics, 2019, 879: 682-715. doi: 10.1017/jfm.2019.681
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  40
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-12
  • 修回日期:  2025-04-22
  • 刊出日期:  2026-01-01

目录

    /

    返回文章
    返回