Transverse Vibration of Functionally Graded Material Cylinder Bars Dipped in Fluid
-
摘要: 基于一阶剪切变形理论(FSDT)和势流理论,对浸没于流体中的功能梯度材料(FGM)圆柱杆进行了横振动分析. 以径向梯度指标表征金属陶瓷杆的材料性能沿径向服从幂律分布,利用分离变量法求解柱坐标系下Laplace方程,确定了流体速度势和流体动力荷载;利用Hamilton原理推导了控制方程,通过多域GDQ方法离散控制方程,结合直接迭代法计算基频与模态振型,采用CEL仿真辅助验证数值结果. 通过参数化研究,评估了长径比、梯度指标、端部边界条件以及流体深度和密度等对FGM杆-流体相互作用系统横振动行为的影响.
-
关键词:
- 功能梯度材料 /
- 横振动 /
- Hamilton原理 /
- 广义微分正交 /
- 流固耦合
Abstract: Based on the 1st-order shear deformation theory (FSDT) and the potential flow theory, the transverse vibration of functionally graded material (FGM) cylinder bars dipped in fluid was analyzed. The cermet bar material properties following a power-law distribution along the radial direction were represented by the radial gradient index. The fluid velocity potential and hydrodynamic loads were determined through solution of the Laplace equation in cylindrical coordinates with the variable separation method. The governing equations of motion were derived according to Hamilton's principle. The fundamental frequencies and mode shapes were obtained with the generalized differential quadrature (GDQ) method and the direct iteration method. Additionally, the finite element analysis (CEL simulation) was used to validate the numerical results. Through parametric studies, the effects of the length-to-diameter ratio, the gradient index, the boundary conditions, as well as the fluid depth and density, on the transverse vibration behavior of the FGM bar-fluid interaction system were evaluated.-
Key words:
- FGM /
- transverse vibration /
- Hamilton's principle /
- GDQ /
- fluid-structure interaction
-
表 1 不同网格点数下FGM杆的基频(n=1)(单位: Hz)
Table 1. Fundamental frequencies of the FGM bar under different grid points (n=1)(unit: Hz)
N C-C C-F Lf/L=0 Lf/L=0.5 Lf/L=1 Lf/L=0 Lf/L=0.5 Lf/L=1 5 919.3 862.9 827.9 153.2 152.1 127.5 7 942.9 886.9 819.9 155.1 154.2 137.0 9 942.1 886.7 820.2 155.1 154.2 137.2 11 942.1 886.8 820.2 155.1 154.2 137.3 13 942.1 886.9 820.2 155.1 154.2 137.4 15 942.1 886.8 820.2 155.1 154.2 137.3 17 942.1 886.9 820.2 155.1 154.2 137.4 表 2 一端固支一端自由C-F FGM杆分别在真空和水中的基频(a=1 m, n=0)(单位: Hz)
Table 2. Fundamental frequencies of the C-F FGM bar in vacuum and in full contact with fluid (a=1 m, n=0)(unit: Hz)
boundary condition method Lf/L=0 Lf/L=1 ratio of frequency in water to frequency in vacuum C-F ref. [33] 8.21 7.48 0.911 1 this paper 8.28 7.37 0.890 1 CEL simulation 8.17 7.25 0.887 4 -
[1] LIU J, KE L L, WANG Y S, et al. Thermoelastic frictional contact of functionally graded materials with arbitrarily varying properties[J]. International Journal of Mechanical Sciences, 2012, 63(1): 86-98. doi: 10.1016/j.ijmecsci.2012.06.016 [2] LEE H S, JEON K Y, KIM H Y, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science, 2000, 35(24): 6231-6236. doi: 10.1023/A:1026749831726 [3] LIU B, WEI W, GAN Y, et al. Preparation, mechanical properties and microstructure of TiB2 based ceramic cutting tool material toughened by TiC whisker[J]. International Journal of Refractory Metals and Hard Materials, 2020, 93: 105372. doi: 10.1016/j.ijrmhm.2020.105372 [4] KHAN S A, SCHULTHESS J L, CHARIT I, et al. Post-irradiation examination of UN-Mo-W fuels for space nuclear propulsion[J]. Journal of Nuclear Materials, 2025, 604: 155476. doi: 10.1016/j.jnucmat.2024.155476 [5] YANG J, WU H, KITIPORNCHAI S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams[J]. Composite Structures, 2017, 161: 111-118. doi: 10.1016/j.compstruct.2016.11.048 [6] 雷剑, 谢宇阳, 姚明格, 等. 变截面二维功能梯度微梁的振动和屈曲特性[J]. 应用数学和力学, 2022, 43(10): 1133-1145. doi: 10.21656/1000-0887.420323LEI Jian, XIE Yuyang, YAO Mingge, et al. Vibration and buckling characteristics of 2D functionally graded microbeams with variable cross sections[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1133-1145. (in Chinese) doi: 10.21656/1000-0887.420323 [7] SHEN H S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments[J]. Composite Structures, 2009, 91(1): 9-19. doi: 10.1016/j.compstruct.2009.04.026 [8] WU B, SU Y, LIU D, et al. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders[J]. Journal of Sound and Vibration, 2018, 421: 17-47. doi: 10.1016/j.jsv.2018.01.055 [9] MAO J J, WANG Y J, ZHANG W, et al. Vibration and wave propagation in functionally graded beams with inclined cracks[J]. Applied Mathematical Modelling, 2023, 118: 166-184. doi: 10.1016/j.apm.2023.01.035 [10] NEJATI M, FARD K M, ESLAMPANAH A, et al. Free vibration analysis of reinforced composite functionally graded plates with steady state thermal conditions[J]. Latin American Journal of Solids and Structures, 2017, 14(5): 886-905. doi: 10.1590/1679-78253705 [11] 龚雪蓓, 赵伟东, 郭冬梅. 横向非均匀温度场作用的FGM夹层圆板热屈曲分析[J]. 应用数学和力学, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094GONG Xuebei, ZHAO Weidong, GUO Dongmei. Thermal buckling analysis of FGM sandwich circular plates under transverse nonuniform temperature field actions[J]. Applied Mathematics and Mechanics, 2023, 44(4): 419-430. (in Chinese) doi: 10.21656/1000-0887.430094 [12] HOSSEINI-HASHEMI S, FADAEE M, ATASHIPOUR S R. A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates[J]. International Journal of Mechanical Sciences, 2011, 53(1): 11-22. doi: 10.1016/j.ijmecsci.2010.10.002 [13] 张继超, 钟心雨, 陈一鸣, 等. 基于Hamilton体系的功能梯度矩形板自由振动问题的解析解[J]. 应用数学和力学, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, et al. Hamiltonian system-based analytical solutions to free vibration problems of functionally graded rectangular plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. (in Chinese) doi: 10.21656/1000-0887.440279 [14] OLSON D W, WOLF S F, HOOK J M. The Tacoma narrows bridge collapse[J]. Physics Today, 2015, 68(11): 64-65. doi: 10.1063/PT.3.2991 [15] CAO Y, WU B, CARRERA E, et al. Axisymmetric vibration of multilayered electroactive circular plates in contact with fluid[J]. Journal of Sound and Vibration, 2024, 573: 118189. doi: 10.1016/j.jsv.2023.118189 [16] JACOBSEN L S. Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindricalpier[J]. Bulletin of the Seismological Society of America, 1949, 39(3): 189-204. doi: 10.1785/BSSA0390030189 [17] HOSSEINI-HASHEMI S, KARIMI M, ROKNI H. Natural frequencies of rectangular Mindlin plates coupled with stationary fluid[J]. Applied Mathematical Modelling, 2012, 36(2): 764-778. doi: 10.1016/j.apm.2011.07.007 [18] KHORSHIDI K, AKBARI F, GHADIRIAN H. Experimental and analytical modal studies of vibrating rectangular plates in contact with a bounded fluid[J]. Ocean Engineering, 2017, 140: 146-154. doi: 10.1016/j.oceaneng.2017.05.017 [19] ZHOU D, CHEUNG Y K. Vibration of vertical rectangular plate in contact with water on oneside[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 693-710. [20] Akbarov S D, Ismailov M I. Frequency response of a viscoelastic plate under compressible viscous fluid loading[J]. International Journal of Mechanics, 2014, 8: 332-344. [21] KOZLOVSKY Y. Vibration of plates in contact with viscous fluid: extension of Lamb's model[J]. Journal of Sound and Vibration, 2009, 326(1/2): 332-339. [22] HOSSEINI-HASHEMI S, ARPANAHI R A, RAHMANIAN S, et al. Free vibration analysis of nano-plate in viscous fluid medium using nonlocal elasticity[J]. European Journal of Mechanics A, 2019, 74: 440-448. doi: 10.1016/j.euromechsol.2019.01.002 [23] JEONG K H, KIM K J. Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid[J]. Journal of Sound and Vibration, 2005, 283(1/2): 153-172. [24] ZHOU D, LIU W Q. Bending-torsion vibration of a partially submerged cylinder with an arbitrary cross-section[J]. Applied Mathematical Modelling, 2007, 31(10): 2249-2265. doi: 10.1016/j.apm.2006.08.011 [25] ZHOU D. Vibration of uniform columns with arbitrarily shaped cross-sections partially submerged in water considering the effects of surface wave and compressibility of water[J]. Computers & Structures, 1993, 46(6): 1049-1054. [26] LIAO C Y, MA C C. Vibration characteristics of rectangular plate in compressible inviscid fluid[J]. Journal of Sound and Vibration, 2016, 362: 228-251. doi: 10.1016/j.jsv.2015.09.031 [27] LI H C, KE L L, YANG J, et al. Free vibration of variable thickness FGM beam submerged in fluid[J]. Composite Structures, 2020, 233: 111582. doi: 10.1016/j.compstruct.2019.111582 [28] LI H C, KE L L, WU Z M, et al. Free vibration of FGM Mindlin plates submerged in fluid[J]. Engineering Structures, 2022, 259: 114144. doi: 10.1016/j.engstruct.2022.114144 [29] WU H, LI Y, LI L, et al. Free vibration analysis of functionally graded graphene nanocomposite beams partially in contact withfluid[J]. Composite Structures, 2022, 291: 115609. doi: 10.1016/j.compstruct.2022.115609 [30] THINH T I, TU T M, VAN LONG N. Free vibration of a horizontal functionally graded rectangular plate submerged in fluid medium[J]. Ocean Engineering, 2020, 216: 107593. doi: 10.1016/j.oceaneng.2020.107593 [31] 王乐, 王亮. 一种新的计算Timoshenko梁截面剪切系数的方法[J]. 应用数学和力学, 2013, 34(7): 756-763. doi: 10.3879/j.issn.1000-0887.2013.07.011WANG Le, WANG Liang. A new method of obtaining Timoshenko's shear coefficients[J]. Applied Mathematics and Mechanics, 2013, 34(7): 756-763. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.07.011 [32] HAN R P S, XU H. A simple and accurate added mass model for hydrodynamic fluid: structure interaction analysis[J]. Journal of the Franklin Institute, 1996, 333(6): 929-945. doi: 10.1016/0016-0032(96)00043-9 [33] HUANG X, EL BAROUDI A, WU B. Vibration properties of an elastic gold nanosphere submerged in viscoelastic fluid[J]. Modern Physics Letters B, 2023, 37(33): 2350174. doi: 10.1142/S0217984923501749 [34] WU B, GAN Y, CARRERA E, et al. Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid[J]. Journal of Fluid Mechanics, 2019, 879: 682-715. doi: 10.1017/jfm.2019.681 -
下载:
渝公网安备50010802005915号