留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜向低速冲击载荷下多边形旋转拼接折纸管耐撞性研究

滕晨皓 刘坤澎 宋志博 陈家玉 周才华 涂昕昊 朱冬妹

滕晨皓, 刘坤澎, 宋志博, 陈家玉, 周才华, 涂昕昊, 朱冬妹. 斜向低速冲击载荷下多边形旋转拼接折纸管耐撞性研究[J]. 应用数学和力学, 2025, 46(5): 633-649. doi: 10.21656/1000-0887.450336
引用本文: 滕晨皓, 刘坤澎, 宋志博, 陈家玉, 周才华, 涂昕昊, 朱冬妹. 斜向低速冲击载荷下多边形旋转拼接折纸管耐撞性研究[J]. 应用数学和力学, 2025, 46(5): 633-649. doi: 10.21656/1000-0887.450336
TENG Chenhao, LIU Kunpeng, SONG Zhibo, CHEN Jiayu, ZHOU Caihua, TU Xinhao, ZHU Dongmei. Crashworthiness of Polygonal Rotary Splicing Origami Tubes Under Oblique Low-Speed Impact Loads[J]. Applied Mathematics and Mechanics, 2025, 46(5): 633-649. doi: 10.21656/1000-0887.450336
Citation: TENG Chenhao, LIU Kunpeng, SONG Zhibo, CHEN Jiayu, ZHOU Caihua, TU Xinhao, ZHU Dongmei. Crashworthiness of Polygonal Rotary Splicing Origami Tubes Under Oblique Low-Speed Impact Loads[J]. Applied Mathematics and Mechanics, 2025, 46(5): 633-649. doi: 10.21656/1000-0887.450336

斜向低速冲击载荷下多边形旋转拼接折纸管耐撞性研究

doi: 10.21656/1000-0887.450336
基金项目: 

国家自然科学基金(面上项目) 12472378

国家自然科学基金青年科学基金 12302465

详细信息
    作者简介:

    滕晨皓(1996—),男,博士(E-mail: tengchenhao1@163.com)

    通讯作者:

    周才华(1987—),男,教授,博士,博士生导师(通讯作者. E-mail: zhoucaihua@dlut.edu.cn)

  • 中图分类号: O347.1

Crashworthiness of Polygonal Rotary Splicing Origami Tubes Under Oblique Low-Speed Impact Loads

  • 摘要: 为提升车用碰撞盒斜向冲击载荷下耐撞性能,该文创新设计出了一种具有多边形旋转拼接折纸图案的折纸管构型,开展了落锤冲击试验及数值仿真分析. 研究发现,冲击载荷下新型折纸管较传统方管具有优异的耐撞性,且最终产生具有高耐撞性能的钻石模式. 另外,该文对新型折纸管开展了不同冲击角度下几何参数耐撞性影响研究,数值结果表明,新型折纸管折痕高度比和折痕长度比以及宽厚比的参数变化显著影响折纸管耐撞性,并引发不同变形模式;不同冲击角度下,新型折纸管的平均力Fave和峰值力Fmax虽然随着冲击角度θ的增大而逐渐下降,但峰值力Fmax的下降趋势较平均力Fave下降趋势更为显著,且折纸管在不同冲击角度下依旧表现出较高的载荷压溃率ηCFE. 进一步验证了多边形旋转拼接折纸管具有优异的斜向冲击吸能性能.
  • 图  1  斜向载荷下DOT变形模式[19]

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Deformation modes of the diamond origami tube under oblique loads[19]

    图  2  PRT

    Figure  2.  PRT

    图  3  PRT加工过程

    Figure  3.  The manufacture process of the PRT

    图  4  PRT(双胞元)

    Figure  4.  PRT (2 modules)

    图  5  冲击试验现场布置

    Figure  5.  Impact test setup

    图  6  有限元模型与网格收敛性分析

    Figure  6.  The finite element model and mesh sensitivity study

    图  7  折纸管变形过程与力-位移曲线

    Figure  7.  The deformation process and force-displacement curves of the origami tube

    图  8  CCB构型示意图与尺寸

    Figure  8.  The configuration and dimensions of the conventional vehicle crash box

    图  9  CCB斜向冲击模型与力-位移曲线和变形过程

    Figure  9.  The oblique impact model, force-displacement curves, and deformation process of the conventional crash box

    图  10  不同高度比h1(h3)/h2Fmax, FaveηCFE的影响

    Figure  10.  Effects of different ratios h1(h3)/h2 on Fmax, Fave and ηCFE

    图  11  PRT-1/3h-4deg和PRT-2h-0deg的变形过程以及塑性变形区域对比

    Figure  11.  Comparison of deformation processes and plastic deformation regions between PRT-1/3h-4deg and PRT-2h-0deg

    图  12  不同折痕长度比a1(b1)/a2(b2)对Fmax, FaveηCFE的影响

    Figure  12.  Effects of different ratios a1(b1)/a2(b2) on Fmax, Fave, and ηCFE

    图  13  PRT-5a-0deg的变形过程以及力-位移曲线

    Figure  13.  Deformation processes of PRT-5a-0deg and force-displacement curves

    图  14  不同宽厚比c/tFmax, Fave, ηCFEea的影响

    Figure  14.  Effects of different ratios c/t on Fmax, Fave, ηCFE and ea

    图  15  不同冲击角度θFmax, Fave, ηCFEea的影响

    Figure  15.  Effects of different impact angles on Fmax, Fave, ηCFE and ea

    图  16  折纸管PRT-ct-49-25deg的变形过程以及力-位移曲线

    Figure  16.  Deformation processes of origami tube PRT-ct-49-25deg and force-displacement curves

    图  17  不同类型折纸管25°斜向冲击下FmaxFave对比

    Figure  17.  Comparison of Fmax and Fave under 25° oblique impact on different types of origami tubes

    图  18  不同类型折纸管25°斜向冲击下ηCFEea对比

    Figure  18.  Comparison of ηCFE and ea under 25° oblique impact on different types of origami tubes

    表  1  试验件的主要几何尺寸

    Table  1.   The main geometric dimensions of the specimens

    experimental sample a1/mm a2/mm b1/mm b2/mm α/(°) β/(°) L/mm t/mm quality/g
    PRT-IE1 30 30 30 30 162 162 115.9 0.85 165.7
    PRT-IE2 30 30 30 30 162 162 116.1 0.85 169.2
    下载: 导出CSV

    表  2  数值模型主要几何尺寸

    Table  2.   The main dimensions of the specimen (numerical model)

    numerical model a1/mm a2/mm b1/mm b2/mm α/(°) β/(°) L/mm t/mm quality/g
    PRT-IN-D 30 30 30 30 162 162 116 0.85 169.7
    下载: 导出CSV

    表  3  数值与试验重要指标结果

    Table  3.   Numerical and experimental significant index results

    tube type Fmax/kN error/% Fave/kN error/% ηCFE/% error/% ea/(J/g) error/%
    CST-IE 59.9 - 11.4 - 19.0 - 6.7 -
    PRT-IE1 34.6 -42.2 24.2 112.3 69.9 267.9 14.3 113.4
    PRT-IE2 35.9 -40.1 24.2 112.3 65.6 245.3 14.3 113.4
    PRT-IN-D 33.9 -43.4 26.0 128.1 76.7 303.7 15.3 128.4
    下载: 导出CSV

    表  4  CCB耐撞性能

    Table  4.   The CCB crashworthiness

    tube type θ/(°) Fmax/kN error/% Fave/kN error/% ηCFE/% ea/(J/g) ηEA
    CCB-0deg 0 391.7 - 147.3 - 37.6 13.3 3.07E-5
    CCB-4deg 4 247.9 -36.7 129.9 -11.8 52.4 11.7 2.71E-5
    CCB-7deg 7 232.9 -40.5 104.3 -29.2 44.8 9.4 2.18E-5
    下载: 导出CSV

    表  5  不同折痕高度比h1(h3)/h2折纸管的几何尺寸和数值计算结果

    Table  5.   Dimensions and numerical results for different ratios h1(h3)/h2

    tube type h1(h3)/mm h2/mm h1(h3)/h2 θ/(°) Fmax/kN Fave/kN ηCFE/% ea/(J/g) ηEA
    PRT-1/3h-0deg
    PRT-1/3h-4deg
    PRT-1/3h-7deg
    30 90 1/3 0 102.8 111.9 108.9 10.1 2.34E-5
    4 89.2 127.4 142.8 11.5 2.66E-5
    7 84.2 112.4 133.6 10.1 2.35E-5
    PRT-1/2h-0deg
    PRT-1/2h-4deg
    PRT-1/2h-7deg
    37.5 75 1/2 0 132.3 127.7 96.5 11.5 2.66E-5
    4 117.6 122.4 104.1 11.0 2.55E-5
    7 96.9 113.0 116.7 10.2 2.36E-5
    PRT-1h-0deg
    PRT-1h-4deg
    PRT-1h-7deg
    50 50 1 0 235.6 137.3 58.3 12.4 2.87E-5
    4 154.1 133.0 86.3 12.0 2.78E-5
    7 135.6 126.7 93.4 11.4 2.64E-5
    PRT-11/8h-0deg
    PRT-11/8h-4deg
    PRT-11/8h-7deg
    55 40 11/8 0 267.8 143.2 53.5 12.9 2.99E-5
    4 162.4 136.2 83.9 12.3 2.84E-5
    7 150.3 129.1 85.9 11.7 2.69E-5
    PRT-2h-0deg
    PRT-2h-4deg
    PRT-2h-7deg
    60 30 2 0 277.9 140.9 50.7 12.7 2.94E-5
    4 167.3 133.6 79.9 12.1 2.79E-5
    7 162.9 128.8 79.1 11.6 2.69E-5
    下载: 导出CSV

    表  9  耐撞性指标对比

    Table  9.   Comparison of crashworthiness indexes

    tube type Fmax/kN error/% Fave /kN error/% ηCFE/% error/% ea/(J/g) error/%
    CCB-0deg 391.7 - 147.3 - 37.6 - 13.3 -
    PRT-ct-49-0deg 112.0 -71.4 183.0 24.2 163.4 334.6 13.4 0.8
    下载: 导出CSV

    表  6  不同折痕长度比a1(b1)/a2(b2)折纸管几何尺寸和数值计算结果

    Table  6.   Dimensions and numerical results for different ratios a1(b1)/a2(b2)

    tube type a1(b1)/mm a2(b2)/mm a1(b1)/a2(b2) θ/(°) Fmax/kN Fave/kN ηCFE/% ea/(J/g) ηEA
    PRT-1a-0deg
    PRT-1a-7deg
    61.25 61.25 1 0 134.1 119.2 88.9 10.8 2.49E-5
    7 121.2 110.6 91.3 10.0 2.31E-5
    PRT-2a-0deg
    PRT-2a-7deg
    81.67 40.83 2 0 104.8 114.2 109.0 10.3 2.38E-5
    7 96.7 114.0 117.9 10.3 2.38E-5
    PRT-3a-0deg
    PRT-3a-7deg
    91.875 60.625 3 0 102.8 111.9 108.9 10.1 2.34E-5
    7 84.2 112.4 133.6 10.1 2.35E-5
    PRT-4a-0deg
    PRT-4a-7deg
    98 24.5 4 0 92.8 127.7 137.5 11.5 2.66E-5
    7 84.4 108.5 128.6 9.8 2.26E-5
    PRT-5a-0deg
    PRT-5a-7deg
    102.08 20.42 5 0 91.0 135.6 149.1 12.2 2.83E-5
    7 80.1 117.1 146.3 10.6 2.44E-5
    下载: 导出CSV

    表  7  不同宽厚比c/t折纸管几何尺寸和数值计算结果

    Table  7.   Dimensions and numerical results for different ratios c/t

    tube type t/mm c/t Fmax/kN error/% Fave/kN error/% ηCFE/% error/% ea/(J/g) error/%
    CCB-0deg 2.0 61.3 391.7 - 147.3 - 37.6 - 13.3 -
    PRT-ct-49 2.5 49.0 112.0 -71.4 183.0 24.2 163.4 334.6 13.4 0.8
    PRT-ct-61 2.0 61.3 91.0 -76.8 135.6 -3.0 149.1 296.5 12.2 -8.3
    PRT-ct-81 1.5 81.7 45.8 -88.3 78.7 -46.6 171.8 356.9 9.6 -27.8
    PRT-ct-122 1.0 122.5 23.8 -93.9 37.4 -28.1 157.1 317.8 6.8 -48.9
    PRT-ct-245 0.5 245.0 8.0 -98.0 12.3 -91.6 153.8 309.0 4.5 -66.2
    下载: 导出CSV

    表  8  不同冲击角度对Fmax, Fave, ηCFEea的影响结果

    Table  8.   Effects of different impact angles on Fmax, Fave, ηCFE and ea

    tube type θ/(°) Fmax/kN error/% Fave/kN error/% ηCFE/% error/% ea/(J/g) error/%
    PRT-ct-49-0deg 0 112.0 - 183.0 - 163.4 - 13.4 -
    PRT-ct-49-10deg 10 40.1 -64.2 146.3 20.1 364.8 123.3 10.7 -20.1
    PRT-ct-49-15deg 15 62.0 -44.6 158.8 13.2 256.1 56.7 11.6 -13.4
    PRT-ct-49-20deg 20 51.2 -54.3 150.0 18.0 293.0 79.3 10.9 -20.1
    PRT-ct-49-25deg 25 36.8 -67.1 119.2 34.9 323.9 98.2 8.7 -35.1
    下载: 导出CSV
  • [1] 何远鹏, 王凌峰, 杨秋松, 等. 多折角梯形台面折纸夹层结构的冲击防护性能[J]. 爆炸与冲击, 2024, 44 (4): 36-48.

    HE Yuanpeng, WANG Lingfeng, YANG Qiusong, et al. Impact response of TPS folded sandwich structure[J]. Explosion and Shock Waves, 2024, 44 (4): 36-48. (in Chinese)
    [2] 霍鹏, 许述财, 范晓文, 等. 鹿角骨单位仿生薄壁管斜向冲击耐撞性研究[J]. 爆炸与冲击, 2020, 40(11): 127-138.

    HUO Peng, XU Shucai, FAN Xiaowen, et al. Oblique impact resistance of a bionic thin-walled tube based on antles osteon[J]. Explosion and Shock Waves, 2020, 40 (11): 127-138. (in Chinese)
    [3] 贾豪博, 任柯融, 卿华, 等. 破片冲击作用下油箱动力学响应行为实验研究[J]. 应用数学和力学, 2023, 44 (8): 944-952. doi: 10.21656/1000-0887.440002

    JIA Haobo, REN Kerong, QING Hua, et al. Experimental study on dynamic responses of fuel tanks under fragment impacts[J]. Applied Mathematics and Mechanics, 2023, 44 (8): 944-952. (in Chinese) doi: 10.21656/1000-0887.440002
    [4] YILDIRIM A, DEMIRCI E, KARAGÖZ S, et al. Experimental and numerical investigation of crashworthiness performance for optimal automobile structures using response surface methodology and oppositional based learning differential evolution algorithm[J]. Materials Testing, 2023, 65 (3): 346-363. doi: 10.1515/mt-2022-0304
    [5] 张智扬, 赵振宇, 任建伟, 等. 蜂窝夹芯结构用连接接头抗冲击性能研究[J]. 应用数学和力学, 2024, 45 (8): 1024-1036. doi: 10.21656/1000-0887.450131

    ZHANG Zhiyang, ZHAO Zhenyu, REN Jianwei, et al. Study on impact resistance of connection joints for honeycomb sandwich structures[J]. Applied Mathematics and Mechanics, 2024, 45 (8): 1024-1036. (in Chinese) doi: 10.21656/1000-0887.450131
    [6] HAN D C, PARK S H. Collapse behavior of square thin-walled columns subjected to oblique loads[J]. Thin-Walled Structures, 1999, 35 (3): 167-184. doi: 10.1016/S0263-8231(99)00022-1
    [7] REYES A, LANGSETH M, HOPPERSTAD O S. Crashworthiness of aluminum extrusions subjected to oblique loading: experiments and numerical analyses[J]. International Journal of Mechanical Sciences, 2002, 44 (9): 1965-1984. doi: 10.1016/S0020-7403(02)00050-4
    [8] 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42 (1): 1-14.

    LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42 (1): 1-14. (in Chinese)
    [9] 杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析[J]. 爆炸与冲击, 2020, 40 (4): 62-72.

    YANG Xin, FAN Xiaowen, XU Shucai, et al. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure[J]. Explosion and Shock Waves, 2020, 40 (4): 62-72. (in Chinese)
    [10] 张筱, 肖勇, 刘洪波, 等. 轴向串联式吸能管的缓冲吸能特性[J]. 爆炸与冲击, 2024, 44 (11): 104-113.

    ZHANG Xiao, XIAO Yong, LIU Hongbo, et al. Energy absorption characteristics of axial series energy absorption tubes[J]. Explosion and Shock Waves, 2024, 44 (11): 104-113. (in Chinese)
    [11] SONG Z, MING S, DU K, et al. Energy absorption of metal-composite hybrid tubes with a diamond origami pattern[J]. Thin-Walled Structures, 2022, 180 : 109824. doi: 10.1016/j.tws.2022.109824
    [12] TENG C H, SONG Z B, ZHOU C H, et al. The imperfection sensitivity of trapezoid origami crash boxes[J]. Thin-Walled Structures, 2024, 196 : 111486. doi: 10.1016/j.tws.2023.111486
    [13] MING S, SONG Z, ZHOU C, et al. The energy absorption of long origami-ending tubes with geometrical imperfections[J]. Thin-Walled Structures, 2021, 161 : 107415. doi: 10.1016/j.tws.2020.107415
    [14] YE H, ZHOU X, MA J, et al. Axial crushing behaviors of composite pre-folded tubes made of KFRP/CFRP hybrid laminates[J]. Thin-Walled Structures, 2020, 149 : 106649. doi: 10.1016/j.tws.2020.106649
    [15] YAO S, ZHU H, LIU M, et al. Energy absorption of origami tubes with polygonal cross-sections[J]. Thin-Walled Structures, 2020, 157 : 107013. doi: 10.1016/j.tws.2020.107013
    [16] YE H T, MA J Y, ZHOU X, et al. Energy absorption behaviors of pre-folded composite tubes with the full-diamond origami patterns[J]. Composite Structures, 2019, 221 : 110904. doi: 10.1016/j.compstruct.2019.110904
    [17] MA J Y, DAI H P, SHI M Y, et al. Quasi-static axial crushing of hexagonal origami crash boxes as energy absorption devices[J]. Mechanical Sciences, 2019, 10 (1): 133-143. doi: 10.5194/ms-10-133-2019
    [18] YANG K, XU S Q, ZHOU S W, et al. Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption[J]. Thin-Walled Structures, 2018, 123 : 100-113. doi: 10.1016/j.tws.2017.11.005
    [19] ZHOU C H, JIANG L L, TIAN K, et al. Origami crash boxes subjected to dynamic oblique loading[J]. Journal of Applied Mechanics, 2017, 84 (9): 091006. doi: 10.1115/1.4037160
  • 加载中
图(18) / 表(9)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  18
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 修回日期:  2025-02-20
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回