• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gauss白噪声激励下时滞悬架系统的随机分岔

兰盼 魏周超

兰盼, 魏周超. Gauss白噪声激励下时滞悬架系统的随机分岔[J]. 应用数学和力学, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343
引用本文: 兰盼, 魏周超. Gauss白噪声激励下时滞悬架系统的随机分岔[J]. 应用数学和力学, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343
LAN Pan, WEI Zhouchao. Random Bifurcation of Time-Delay Suspension Systems Under Gaussian White Noise Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343
Citation: LAN Pan, WEI Zhouchao. Random Bifurcation of Time-Delay Suspension Systems Under Gaussian White Noise Excitation[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1527-1539. doi: 10.21656/1000-0887.450343

Gauss白噪声激励下时滞悬架系统的随机分岔

doi: 10.21656/1000-0887.450343
基金项目: 

国家自然科学基金(12172340

12411530068)

详细信息
    作者简介:

    兰盼(2000—),女,硕士生(E-mail: lanpan1128@163.com);魏周超(1984—),男,教授,博士,博士生导师(通讯作者. E-mail: weizhouchao@163.com).

    通讯作者:

    魏周超(1984—),男,教授,博士,博士生导师(通讯作者. E-mail: weizhouchao@163.com).

  • 中图分类号: O32

Random Bifurcation of Time-Delay Suspension Systems Under Gaussian White Noise Excitation

Funds: 

The National Science Foundation of China(12172340

12411530068)

  • 摘要: 研究了具有随机激励和时滞反馈控制的悬架系统.首先,分析系统发生Hopf分岔的条件.其次,利用中心流形理论和最大Lyapunov指数,研究系统的局部稳定性和随机D分岔条件,并通过奇异边界理论探讨了系统的全局稳定性.最后,通过数值模拟揭示了噪声强度和时滞反馈系数对系统动力学的影响,并验证了理论结果.
  • [2]TRUE H. On the theory of nonlinear dynamics and its applications in vehicle systems dynamics[J].Vehicle System Dynamics,1999,31(5/6): 393-421.
    MARGOLLS D L. The response of active and semi-active suspensions to realistic feedback signals[J].Vehicle System Dynamics,1982,11(5/6): 267-282.
    [3]ZHU Q, ISHITOBI M. Chaos and bifurcations in a nonlinear vehicle model[J].Journal of Sound and Vibration,2004,275(3): 1136-1146.
    [4]WU J, ZHOU H, LIU Z, et al. Ride comfort optimization via speed planning and preview semi-active suspension control for autonomous vehicles on uneven roads[J].IEEE Transactions on Vehicular Technology,2020,69(8): 8343-8355.
    [5]ZHOU S, SONG G, SUN M, et al. Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation[J].International Journal of Non-Linear Mechanics,2016,84: 82-93.
    [6]BOUAZARA M, RICHARD M J, RAKHEJA S. Safety and comfort analysis of a 3-D vehicle model with optimal non-linear active seat suspension[J].Journal of Terramechanics,2006,43(2): 97-118.
    [7]徐明, 黄庆生, 李刚. 车辆半主动悬架智能控制方法研究现状[J]. 机床与液压, 2021,49(1): 169-174. (XU Ming, HUANG Qingsheng, LI Gang. Research status of intelligent control method for vehicle semi-active suspension[J].Machine Tool & Hydraulics,2021,49(1): 169-174. (in Chinese))
    [8]BOROWIEC M, LITAK G. Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation[J].Nonlinear Dynamics,2012,70(2): 1125-1133.
    [9]ZHANG H, LIU J, WANG E, et al. Nonlinear dynamic analysis of a skyhook-based semi-active suspension system with magneto-rheological damper[J].IEEE Transactions on Vehicular Technology,2018,67(11): 10446-10456.
    [10]ULLAH M Z, MALLAWI F, BALEANU D, et al. A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system[J].Chaos,Solitons & Fractals,2020,132: 109530.
    [11]TUWA P R N, MOLLA T, NOUBISSIE S, et al. Analysis of a quarter car suspension based on a Kelvin-Voigt viscoelastic model with fractional-order derivative[J].International Journal of Non-Linear Mechanics,2021,137: 103818.
    [12]ZHANG H, LING L, ZHAI W. Adaptive nonlinear damping control of active secondary suspension for hunting stability of high-speed trains[J].Applied Mathematical Modelling,2024,133: 79-107.
    [13]彭冲, 李连. 汽车电磁主动悬架的研究现状与发展趋势[J]. 重型汽车, 2018(2): 19-21. (PENG Chong, LI Lian. Research status and development trend of automobile electromagnetic active suspension[J].Heavy Truck,2018(2): 19-21. (in Chinese))
    [14]崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017,38(12): 1331-1341. (CUI Xinbin, FU Jingli. Noether symmetry of automotive electromagnetic suspension systems and its application[J].Applied Mathematics and Mechanics,2017,38(12): 1331-1341. (in Chinese))
    [15]ZHANG C, XIAO J. Chaotic behavior and feedback control of magnetorheological suspension system with fractional-order derivative[J].Journal of Computational and Nonlinear Dynamics,2018,13(2): 021007.
    [16]DEHGHANI R, KHANLO H M, FAKHRAEI J. Active chaos control of a heavy articulated vehicle equipped with magnetorheological dampers[J]. Nonlinear Dynamics,2017,87(3): 1923-1942.
    [17]ZHANG H, CHENG K, WANG E, et al. Nonlinear behaviors of a half-car magnetorheo logical suspension system under harmonic road excitation[J].IEEE Transactions on Vehicular Technology,2023,72(7): 8592-8600.
    [18]ZHOU L, WANG M. Dynamic characterisation of a nonlinear electromagnetic force model under simple harmonic excitation[J].Chaos,Solitons & Fractals,2024,180: 114450.
    [19]LITAK G, BOROWIEC M, FRISWELL M I, et al. Chaotic response of a quarter car model forced by a road profile with a stochastic component[J].Chaos,Solitons & Fractals,2009,39(5): 2448-2456.
    [20]LITAK G, BOROWIEC M, FRISWELL M I, et al. Chaotic vibration of a quarter-car model excited by the road surface profile[J].Communications in Nonlinear Science and Numerical Simulation,2008,13(7): 1373-1383.
    [21]CHEN E, XING W, WANG M, et al. Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation[J].Chaos,Solitons & Fractals,2021,152: 111300.
    [22]ZHAO H, FU C, ZHU W, et al. Dynamic characteristics and sensitivity analysis of a nonlinear vehicle suspension system with stochastic uncertainties[J].Nonlinear Dynamics,2024,112(24): 21605-21626.
    [23]MOLLA T, DURAISAMY P, RAJAGOPAL K, et al. Exploring nonlinearity in quarter car models with an experimental approach to formulating fractional order form and its dynamic analysis[J].Scientific Reports,2024,14: 12074.
    [24]NAIK R D, SINGRU P M. Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(8): 3397-3410.
    [25]KOUMENE TAFFO G I, SIEWESIEWE M, TCHAWOUA C. Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control[J].Chaos,Solitons & Fractals,2016,87: 226-239.
    [26]WANG W, SONG Y. Analytical computation method for steady-state stochastic response of a time-delay nonlinear automotive suspension system[J].Mechanical Systems and Signal Processing,2019,131: 434-445.
    [27]WATANABE M, PRASAD A, SAKAI K. Delayed feedback active suspension control for chaos in quarter car model with jumping nonlinearity[J].Chaos,Solitons & Fractals,2024,186: 115236.
    [28]YANG Y G, CEN M H. Stochastic dynamics of an electromagnetic energy harvesting suspension with time-delayed feedback and fractional damping[J].International Journal of Non-Linear Mechanics,2024,165: 104766.
    [29]FOFANA M S. Asymptotic stability of a stochastic delay equation[J].Probabilistic Engineering Mechanics,2002,17(4): 385-392.
    [30]ZHANG J, NAN M, WEI L, et al. Bifurcation analysis of a wind turbine generator drive system with stochastic excitation under both displacement and velocity delayed feedback[J].International Journal of Bifurcation and Chaos,2023,33(7): 2350079.
    [31]WANG M, WEI Z, WANG J, et al. Stochastic bifurcation and chaos study for nonlinear ship rolling motion with random excitation and delayed feedback controls[J].Physica D:Nonlinear Phenomena,2024,462: 134147.
    [32]LI Y, WEI Z, KAPITANIAK T, et al. Stochastic bifurcation and chaos analysis for a class of ships rolling motion under non-smooth perturbation and random excitation[J].Ocean Engineering,2022,266: 112859.
    [33]ARNOLD L, JONES C, MISCHAIKOW K, et al.Random Dynamical Systems[M]. Berlin, Heidelberg: Springer, 1995.
    [34]朱位秋. 非线性随机动力学与控制: Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.(ZHU Weiqiu.Nonlinear Stochastic Dynamics and Control: Framework of Hamilton Theory System[M]. Beijing: Science Press, 2003. (in Chinese))
    [35]ZHU W Q, HUANG Z L. Stochastic Hopf bifurcation of quasi-nonintegrable-Hamiltonian systems[J].International Journal of Non-Linear Mechanics,1999,34(3): 437-447.
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-04-22
  • 网络出版日期:  2025-12-31

目录

    /

    返回文章
    返回