|
[2]AKHTAR P, KARMAKAR S, SAHOO D, et al. Dynamical analysis of a prey-predator model in toxic habitat with weak Allee effect and additional food[J].International Journal of Dynamics and Control,2024,12(11): 3963-3986.
|
|
MUIR E J, LAJEUNESSE M J, KRAMERA M. The magnitude of Allee effects varies across Allee mechanisms, but not taxonomic groups[J].Oikos,2024,2024(7): e10386.
|
|
[3]刘冠琦, 王玉文, 史峻平. 具有强Allee效应的半线性椭圆方程正解的存在性和非存在性[J]. 应用数学和力学, 2009,30(11): 1374-1380.(LIU Guanqi, WANG Yuwen, SHI Junping. Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect[J].Applied Mathematics and Mechanics,2009,30(11): 1374-1380. (in Chinese))
|
|
[4]NAIK P A, JAVAID Y, AHMED R, et al. Stability and bifurcation analysis of a population dynamic model with Allee effect via piecewise constant argument method[J].Journal of Applied Mathematics and Computing,2024,70(5): 4189-4218.
|
|
[5]VOLTERRA V. Variations and fluctuations of the number of individuals in animal species living together[J].ICES Journal of Marine Science,1928,3(1): 3-51.
|
|
[6]XUE Y. Analysis of a prey-predator system incorporating the additive Allee effect and intraspecific cooperation[J].AIMS Mathematics,2024,9(1): 1273-1290.
|
|
[7]KONDO M, ONITSUKA M. Ulam type stability for Von Bertalanffy growth model with Allee effect[J].Mathematical Biosciences and Engineering,2024,21(3): 4698-4723.
|
|
[8]ZHU Z, CHEN Y, CHEN F, et al. Complex dynamics of a predator-prey model with opportunistic predator and weak Allee effect in prey[J].Journal of Biological Dynamics,2023,17(1): 2225545.
|
|
[9]WEI Z, CHEN F. Dynamics of a delayed predator-prey model with prey refuge, Allee effect and fear effect[J].International Journal of Bifurcation and Chaos,2023,33(3): 2350036.
|
|
[10]SAHOO K, SAHOO B. Crucial impact of component Allee effect in predator-prey system[J].Journal of Physics A:Mathematical and Theoretical,2024,57(21): 215601.
|
|
[11]覃文杰, 关海艳, 王培培, 等. 基于Allee效应诱导的Filippov生态系统的动力学行为研究[J]. 应用数学和力学, 2020,41(4): 438-447.(QIN Wenjie, GUAN Haiyan, WANG Peipei, et al. Dynamic behaviors of filippov ecosystems induced by Allee effects[J].Applied Mathematics and Mechanics,2020,41(4): 438-447. (in Chinese))
|
|
[12]ZU J, MIMURA M. The impact of Allee effect on a predator-prey system with Holling type II functional response[J].Applied Mathematics and Computation,2010,217(7): 3542-3556.
|
|
[13]GAIKO V A, VUIK C. Global dynamics in the Leslie-Gower model with the Allee effect[J].International Journal of Bifurcation and Chaos,2018,28(12): 1850151.
|
|
[14]SARANGI B P, RAW S N. Dynamics of a spatially explicit eco-epidemic model with double Allee effect[J].Mathematics and Computers in Simulation,2023,206: 241-263.
|
|
[15]WANG F, YANG R, ZHANG X. Turing patterns in a predator-prey model with double Allee effect[J].Mathematics and Computers in Simulation,2024,220: 170-191.
|
|
[16]TURING A M. The chemical basis of morphogenesis[J].Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences,1952,〖STHZ〗 237: 37-72.
|
|
[17]TORCICOLLO I, VITIELLO M. Turing instability and spatial pattern formation in a model of urbancrime[J].Mathematics,2024,12(7): 1097.
|
|
[18]宁利中, 宁碧波, 胡彪, 等. 具有水平流动的对流斑图成长和动力学特性[J]. 应用数学和力学, 2020,41(10): 1146-1156.(NING Lizhong, NING Bibo, HU Biao, et al. Growth and dynamics of convection patterns with horizontal flow[J].Applied Mathematics and Mechanics,2020,41(10): 1146-1156. (in Chinese))
|
|
[19]ZHOU J, YE Y, ARENAS A, et al. Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks[J].Chaos,Solitons & Fractals,2023,174: 113805.
|
|
[20]WANG J L, HAN Y X, CHEN Q T, et al. Numerical simulation and theoretical analysis of pattern dynamics for the fractional-in-space Schnakenberg model[J].Frontiers in Physics,2024,12: 1452077.
|
|
[21]LI W, LI Y, YANG R. Spatial patterns of a reaction-diffusion population system with cross-diffusion and habitat complexity[J].International Journal of Biomathematics,2025,18(8): 2450038. DOI: 10.1142/s1793524524500384.
|
|
[22]柳文清, 陈清婉. 捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J]. 应用数学和力学, 2019,40(3): 321-331.(LIU Wenqing, CHEN Qingwan. Influence of diffusion on an invasion-diffusion prey-predator model with disease infection in both populations[J].Applied Mathematics and Mechanics,2019,40(3): 321-331. (in Chinese))
|
|
[23]WEI J, LIU B. Coexistence in a competition-diffusion-advection system with equal amount of total resources[J].Mathematical Biosciences and Engineering,2021,18(4): 3543-3558.
|
|
[24]WANG J, ZHENG H. Analysis on steady states of a competition system with nonlinear diffusion terms[J].Acta Applicandae Mathematicae,2021,171(1): 26.
|
|
[25]LI L, LI X. The spatiotemporal dynamics of a diffusive predator-prey model with double Allee effect[J].AIMS Mathematics,2024,9(10): 26902-26915.
|
|
[26]祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017,38(3): 355-368.(ZU Li, HUANG Dongdong, LIU Yang. Dynamics of dual-dispersal predator-prey systems under stochastic perturbations[J].Applied Mathematics and Mechanics,2017,38(3): 355-368. (in Chinese))
|
|
[27]JANA D, BATABYAL S, LAKSHMANAN M. Self-diffusion-driven pattern formation in prey-predator system with complex habitat under fear effect[J].The European Physical Journal Plus,2020,135(11): 884.
|
|
[28]SUN G Q, JIN Z, LIU Q X, et al.Pattern formation induced by cross-diffusion in a predator-prey system[J].Chinese Physics B,2008,17(11): 3936-3941.
|
|
[29]WANG F, YANG R. Spatial pattern formation driven by the cross-diffusion in a predator-prey model with Holling type functional response[J].Chaos,Solitons & Fractals,2023,174: 113890.
|
|
[30]CAI Y, ZHAO C, WANG W, et al. Dynamics of a Leslie-Gower predator-prey model with additive Allee effect[J].Applied Mathematical Modelling,2015,39(7): 2092-2106.
|