• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化

阳锋 肖敏 杨正午 段代凤 杨鑫松 曹进德

阳锋, 肖敏, 杨正午, 段代凤, 杨鑫松, 曹进德. 交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化[J]. 应用数学和力学, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002
引用本文: 阳锋, 肖敏, 杨正午, 段代凤, 杨鑫松, 曹进德. 交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化[J]. 应用数学和力学, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002
YANG Feng, XIAO Min, YANG Zhengwu, DUAN Daifeng, YANG Xinsong, CAO Jinde. Pattern Evolution in a Predator-Prey System Driven by Cross-Diffusion and Double Allee Effects[J]. Applied Mathematics and Mechanics, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002
Citation: YANG Feng, XIAO Min, YANG Zhengwu, DUAN Daifeng, YANG Xinsong, CAO Jinde. Pattern Evolution in a Predator-Prey System Driven by Cross-Diffusion and Double Allee Effects[J]. Applied Mathematics and Mechanics, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002

交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化

doi: 10.21656/1000-0887.460002
基金项目: 

国家自然科学基金(62073172);江苏省自然科学基金(BK20221329)

详细信息
    作者简介:

    阳锋(2002—),男,硕士生(E-mail: a865422919@163.com);肖敏(1977—),男,教授,博士,博士生导师(通信作者. E-mail: candymanxm2003@aliyun.com).

    通讯作者:

    肖敏(1977—),男,教授,博士,博士生导师(通信作者. E-mail: candymanxm2003@aliyun.com).

  • 中图分类号: O175.21

Pattern Evolution in a Predator-Prey System Driven by Cross-Diffusion and Double Allee Effects

Funds: 

The National Science Foundation of China(62073172)

  • 摘要: 考虑了Holling-Ⅱ型功能反应项和改进的LeslieGower项,建立了具有双Allee效应的交叉扩散捕食猎物模型,分析了无扩散系统下正平衡点的存在性和稳定性,给出了有扩散项作用下发生Turing不稳定的条件.同时重点研究了双Allee效应对斑图形成、结构改变和演化速度的影响机制.研究发现:在扩散驱动系统稳定的情况下,Allee效应能够诱导斑图的形成;在扩散驱动系统不稳定的情况下,Allee效应能够实现斑图结构的改变.此外,在不同的Allee效应系数下,系统到达稳定纯色斑图和稳定混色斑图的时间各不同,即Allee效应能够改变斑图的演化速度.因此,双Allee效应在捕食猎物系统中对Turing斑图的形成和演化具有至关重要的作用.
  • [2]AKHTAR P, KARMAKAR S, SAHOO D, et al. Dynamical analysis of a prey-predator model in toxic habitat with weak Allee effect and additional food[J].International Journal of Dynamics and Control,2024,12(11): 3963-3986.
    MUIR E J, LAJEUNESSE M J, KRAMERA M. The magnitude of Allee effects varies across Allee mechanisms, but not taxonomic groups[J].Oikos,2024,2024(7): e10386.
    [3]刘冠琦, 王玉文, 史峻平. 具有强Allee效应的半线性椭圆方程正解的存在性和非存在性[J]. 应用数学和力学, 2009,30(11): 1374-1380.(LIU Guanqi, WANG Yuwen, SHI Junping. Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect[J].Applied Mathematics and Mechanics,2009,30(11): 1374-1380. (in Chinese))
    [4]NAIK P A, JAVAID Y, AHMED R, et al. Stability and bifurcation analysis of a population dynamic model with Allee effect via piecewise constant argument method[J].Journal of Applied Mathematics and Computing,2024,70(5): 4189-4218.
    [5]VOLTERRA V. Variations and fluctuations of the number of individuals in animal species living together[J].ICES Journal of Marine Science,1928,3(1): 3-51.
    [6]XUE Y. Analysis of a prey-predator system incorporating the additive Allee effect and intraspecific cooperation[J].AIMS Mathematics,2024,9(1): 1273-1290.
    [7]KONDO M, ONITSUKA M. Ulam type stability for Von Bertalanffy growth model with Allee effect[J].Mathematical Biosciences and Engineering,2024,21(3): 4698-4723.
    [8]ZHU Z, CHEN Y, CHEN F, et al. Complex dynamics of a predator-prey model with opportunistic predator and weak Allee effect in prey[J].Journal of Biological Dynamics,2023,17(1): 2225545.
    [9]WEI Z, CHEN F. Dynamics of a delayed predator-prey model with prey refuge, Allee effect and fear effect[J].International Journal of Bifurcation and Chaos,2023,33(3): 2350036.
    [10]SAHOO K, SAHOO B. Crucial impact of component Allee effect in predator-prey system[J].Journal of Physics A:Mathematical and Theoretical,2024,57(21): 215601.
    [11]覃文杰, 关海艳, 王培培, 等. 基于Allee效应诱导的Filippov生态系统的动力学行为研究[J]. 应用数学和力学, 2020,41(4): 438-447.(QIN Wenjie, GUAN Haiyan, WANG Peipei, et al. Dynamic behaviors of filippov ecosystems induced by Allee effects[J].Applied Mathematics and Mechanics,2020,41(4): 438-447. (in Chinese))
    [12]ZU J, MIMURA M. The impact of Allee effect on a predator-prey system with Holling type II functional response[J].Applied Mathematics and Computation,2010,217(7): 3542-3556.
    [13]GAIKO V A, VUIK C. Global dynamics in the Leslie-Gower model with the Allee effect[J].International Journal of Bifurcation and Chaos,2018,28(12): 1850151.
    [14]SARANGI B P, RAW S N. Dynamics of a spatially explicit eco-epidemic model with double Allee effect[J].Mathematics and Computers in Simulation,2023,206: 241-263.
    [15]WANG F, YANG R, ZHANG X. Turing patterns in a predator-prey model with double Allee effect[J].Mathematics and Computers in Simulation,2024,220: 170-191.
    [16]TURING A M. The chemical basis of morphogenesis[J].Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences,1952,〖STHZ〗 237: 37-72.
    [17]TORCICOLLO I, VITIELLO M. Turing instability and spatial pattern formation in a model of urbancrime[J].Mathematics,2024,12(7): 1097.
    [18]宁利中, 宁碧波, 胡彪, 等. 具有水平流动的对流斑图成长和动力学特性[J]. 应用数学和力学, 2020,41(10): 1146-1156.(NING Lizhong, NING Bibo, HU Biao, et al. Growth and dynamics of convection patterns with horizontal flow[J].Applied Mathematics and Mechanics,2020,41(10): 1146-1156. (in Chinese))
    [19]ZHOU J, YE Y, ARENAS A, et al. Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks[J].Chaos,Solitons & Fractals,2023,174: 113805.
    [20]WANG J L, HAN Y X, CHEN Q T, et al. Numerical simulation and theoretical analysis of pattern dynamics for the fractional-in-space Schnakenberg model[J].Frontiers in Physics,2024,12: 1452077.
    [21]LI W, LI Y, YANG R. Spatial patterns of a reaction-diffusion population system with cross-diffusion and habitat complexity[J].International Journal of Biomathematics,2025,18(8): 2450038. DOI: 10.1142/s1793524524500384.
    [22]柳文清, 陈清婉. 捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J]. 应用数学和力学, 2019,40(3): 321-331.(LIU Wenqing, CHEN Qingwan. Influence of diffusion on an invasion-diffusion prey-predator model with disease infection in both populations[J].Applied Mathematics and Mechanics,2019,40(3): 321-331. (in Chinese))
    [23]WEI J, LIU B. Coexistence in a competition-diffusion-advection system with equal amount of total resources[J].Mathematical Biosciences and Engineering,2021,18(4): 3543-3558.
    [24]WANG J, ZHENG H. Analysis on steady states of a competition system with nonlinear diffusion terms[J].Acta Applicandae Mathematicae,2021,171(1): 26.
    [25]LI L, LI X. The spatiotemporal dynamics of a diffusive predator-prey model with double Allee effect[J].AIMS Mathematics,2024,9(10): 26902-26915.
    [26]祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017,38(3): 355-368.(ZU Li, HUANG Dongdong, LIU Yang. Dynamics of dual-dispersal predator-prey systems under stochastic perturbations[J].Applied Mathematics and Mechanics,2017,38(3): 355-368. (in Chinese))
    [27]JANA D, BATABYAL S, LAKSHMANAN M. Self-diffusion-driven pattern formation in prey-predator system with complex habitat under fear effect[J].The European Physical Journal Plus,2020,135(11): 884.
    [28]SUN G Q, JIN Z, LIU Q X, et al.Pattern formation induced by cross-diffusion in a predator-prey system[J].Chinese Physics B,2008,17(11): 3936-3941.
    [29]WANG F, YANG R. Spatial pattern formation driven by the cross-diffusion in a predator-prey model with Holling type functional response[J].Chaos,Solitons & Fractals,2023,174: 113890.
    [30]CAI Y, ZHAO C, WANG W, et al. Dynamics of a Leslie-Gower predator-prey model with additive Allee effect[J].Applied Mathematical Modelling,2015,39(7): 2092-2106.
  • 加载中
计量
  • 文章访问数:  20
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-02-24
  • 网络出版日期:  2026-01-21
  • 刊出日期:  2026-01-01

目录

    /

    返回文章
    返回