• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化

阳锋 肖敏 杨正午 段代凤 杨鑫松 曹进德

阳锋, 肖敏, 杨正午, 段代凤, 杨鑫松, 曹进德. 交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化[J]. 应用数学和力学, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002
引用本文: 阳锋, 肖敏, 杨正午, 段代凤, 杨鑫松, 曹进德. 交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化[J]. 应用数学和力学, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002
YANG Feng, XIAO Min, YANG Zhengwu, DUAN Daifeng, YANG Xinsong, CAO Jinde. Pattern Evolution in a Predator-Prey System Driven by Cross-Diffusion and Double Allee Effects[J]. Applied Mathematics and Mechanics, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002
Citation: YANG Feng, XIAO Min, YANG Zhengwu, DUAN Daifeng, YANG Xinsong, CAO Jinde. Pattern Evolution in a Predator-Prey System Driven by Cross-Diffusion and Double Allee Effects[J]. Applied Mathematics and Mechanics, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002

交叉扩散和双Allee效应驱动下捕食-猎物系统的斑图演化

doi: 10.21656/1000-0887.460002
(我刊编委曹进德来稿)
基金项目: 

国家自然科学基金 62073172

江苏省自然科学基金 BK20221329

详细信息
    作者简介:

    阳锋(2002—),男,硕士生(E-mail: a865422919@163.com)

    通讯作者:

    肖敏(1977—),男,教授,博士,博士生导师(通信作者. E-mail: candymanxm2003@aliyun.com)

  • 中图分类号: O175.21

Pattern Evolution in a Predator-Prey System Driven by Cross-Diffusion and Double Allee Effects

(Contributed by CAO Jinde, M. AMM Editorial Board)
  • 摘要: 考虑了Holling-Ⅱ型功能反应项和改进的Leslie-Gower项,建立了具有双Allee效应的交叉扩散捕食-猎物模型,分析了无扩散系统下正平衡点的存在性和稳定性,给出了有扩散项作用下发生Turing不稳定的条件.同时重点研究了双Allee效应对斑图形成、结构改变和演化速度的影响机制.研究发现:在扩散驱动系统稳定的情况下,Allee效应能够诱导斑图的形成;在扩散驱动系统不稳定的情况下,Allee效应能够实现斑图结构的改变.此外,在不同的Allee效应系数下,系统到达稳定纯色斑图和稳定混色斑图的时间各不同,即Allee效应能够改变斑图的演化速度.因此,双Allee效应在捕食-猎物系统中对Turing斑图的形成和演化具有至关重要的作用.
    1)  (我刊编委曹进德来稿)
  • 图  1  系数m的色散关系曲线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Dispersion relation curves of parameter m

    图  2  不同m取值的斑图

    Figure  2.  Patterns with different values of m

    图  3  系数n的色散关系曲线

    Figure  3.  Dispersion relation curves of parameter n

    图  4  不同n取值的斑图

    Figure  4.  Patterns with different values of n

    图  5  不同mn取值的系统演化图(减小m, 增大n)

    Figure  5.  Evolutionary diagrams of the system for different values of m and n(decrease m, increase n)

    图  6  不同mn取值的系统演化图(增大m, 减小n)

    Figure  6.  Evolutionary diagrams of the system for different values of m and n(increase m, decrease n)

  • [1] MUIR E J, LAJEUNESSE M J, KRAMERA M. The magnitude of Allee effects varies across Allee mechanisms, but not taxonomic groups[J]. Oikos, 2024, 2024(7): e10386. doi: 10.1111/oik.10386
    [2] AKHTAR P, KARMAKAR S, SAHOO D, et al. Dynamical analysis of a prey-predator model in toxic habitat with weak Allee effect and additional food[J]. International Journal of Dynamics and Control, 2024, 12(11): 3963-3986. doi: 10.1007/s40435-024-01473-w
    [3] 刘冠琦, 王玉文, 史峻平. 具有强Allee效应的半线性椭圆方程正解的存在性和非存在性[J]. 应用数学和力学, 2009, 30(11): 1374-1380. doi: 10.3879/j.issn.1000-0887.2009.11.012

    LIU Guanqi, WANG Yuwen, SHI Junping. Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect[J]. Applied Mathematics and Mechanics, 2009, 30(11): 1374-1380. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.11.012
    [4] NAIK P A, JAVAID Y, AHMED R, et al. Stability and bifurcation analysis of a population dynamic model with Allee effect via piecewise constant argument method[J]. Journal of Applied Mathematics and Computing, 2024, 70(5): 4189-4218. doi: 10.1007/s12190-024-02119-y
    [5] VOLTERRA V. Variations and fluctuations of the number of individuals in animal species living together[J]. ICES Journal of Marine Science, 1928, 3(1): 3-51. doi: 10.1093/icesjms/3.1.3
    [6] XUE Y. Analysis of a prey-predator system incorporating the additive Allee effect and intraspecific cooperation[J]. AIMS Mathematics, 2024, 9(1): 1273-1290. doi: 10.3934/math.2024063
    [7] KONDO M, ONITSUKA M. Ulam type stability for Von Bertalanffy growth model with Allee effect[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4698-4723. doi: 10.3934/mbe.2024206
    [8] ZHU Z, CHEN Y, CHEN F, et al. Complex dynamics of a predator-prey model with opportunistic predator and weak Allee effect in prey[J]. Journal of Biological Dynamics, 2023, 17(1): 2225545. doi: 10.1080/17513758.2023.2225545
    [9] WEI Z, CHEN F. Dynamics of a delayed predator-prey model with prey refuge, Allee effect and fear effect[J]. International Journal of Bifurcation and Chaos, 2023, 33(3): 2350036. doi: 10.1142/S0218127423500360
    [10] SAHOO K, SAHOO B. Crucial impact of component Allee effect in predator-prey system[J]. Journal of Physics A: Mathematical and Theoretical, 2024, 57(21): 215601. doi: 10.1088/1751-8121/ad43ca
    [11] 覃文杰, 关海艳, 王培培, 等. 基于Allee效应诱导的Filippov生态系统的动力学行为研究[J]. 应用数学和力学, 2020, 41(4): 438-447. doi: 10.21656/1000-0887.400169

    QIN Wenjie, GUAN Haiyan, WANG Peipei, et al. Dynamic behaviors of filippov ecosystems induced by Allee effects[J]. Applied Mathematics and Mechanics, 2020, 41(4): 438-447. (in Chinese) doi: 10.21656/1000-0887.400169
    [12] ZU J, MIMURA M. The impact of Allee effect on a predator-prey system with Holling type Ⅱ functional response[J]. Applied Mathematics and Computation, 2010, 217(7): 3542-3556. doi: 10.1016/j.amc.2010.09.029
    [13] GAIKO V A, VUIK C. Global dynamics in the Leslie-Gower model with the Allee effect[J]. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850151. doi: 10.1142/S0218127418501511
    [14] SARANGI B P, RAW S N. Dynamics of a spatially explicit eco-epidemic model with double Allee effect[J]. Mathematics and Computers in Simulation, 2023, 206: 241-263. doi: 10.1016/j.matcom.2022.11.004
    [15] WANG F, YANG R, ZHANG X. Turing patterns in a predator-prey model with double Allee effect[J]. Mathematics and Computers in Simulation, 2024, 220: 170-191. doi: 10.1016/j.matcom.2024.01.015
    [16] TURING A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 1952, 237: 37-72.
    [17] TORCICOLLO I, VITIELLO M. Turing instability and spatial pattern formation in a model of urbancrime[J]. Mathematics, 2024, 12(7): 1097. doi: 10.3390/math12071097
    [18] 宁利中, 宁碧波, 胡彪, 等. 具有水平流动的对流斑图成长和动力学特性[J]. 应用数学和力学, 2020, 41(10): 1146-1156. doi: 10.21656/1000-0887.410104

    NING Lizhong, NING Bibo, HU Biao, et al. Growth and dynamics of convection patterns with horizontal flow[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1146-1156. (in Chinese) doi: 10.21656/1000-0887.410104
    [19] ZHOU J, YE Y, ARENAS A, et al. Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks[J]. Chaos, Solitons & Fractals, 2023, 174: 113805.
    [20] WANG J L, HAN Y X, CHEN Q T, et al. Numerical simulation and theoretical analysis of pattern dynamics for the fractional-in-space Schnakenberg model[J]. Frontiers in Physics, 2024, 12: 1452077. doi: 10.3389/fphy.2024.1452077
    [21] LI W, LI Y, YANG R. Spatial patterns of a reaction-diffusion population system with cross-diffusion and habitat complexity[J]. International Journal of Biomathematics, 2025, 18(8): 2450038. DOI: 10.1142/s1793524524500384.
    [22] 柳文清, 陈清婉. 捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J]. 应用数学和力学, 2019, 40(3): 321-331. doi: 10.21656/1000-0887.390100

    LIU Wenqing, CHEN Qingwan. Influence of diffusion on an invasion-diffusion prey-predator model with disease infection in both populations[J]. Applied Mathematics and Mechanics, 2019, 40(3): 321-331. (in Chinese) doi: 10.21656/1000-0887.390100
    [23] WEI J, LIU B. Coexistence in a competition-diffusion-advection system with equal amount of total resources[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3543-3558. doi: 10.3934/mbe.2021178
    [24] WANG J, ZHENG H. Analysis on steady states of a competition system with nonlinear diffusion terms[J]. Acta Applicandae Mathematicae, 2021, 171(1): 26. doi: 10.1007/s10440-021-00393-7
    [25] LI L, LI X. The spatiotemporal dynamics of a diffusive predator-prey model with double Allee effect[J]. AIMS Mathematics, 2024, 9(10): 26902-26915. doi: 10.3934/math.20241309
    [26] 祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017, 38(3): 355-368. doi: 10.21656/1000-0887.370051

    ZU Li, HUANG Dongdong, LIU Yang. Dynamics of dual-dispersal predator-prey systems under stochastic perturbations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 355-368. (in Chinese) doi: 10.21656/1000-0887.370051
    [27] JANA D, BATABYAL S, LAKSHMANAN M. Self-diffusion-driven pattern formation in prey-predator system with complex habitat under fear effect[J]. The European Physical Journal Plus, 2020, 135(11): 884. doi: 10.1140/epjp/s13360-020-00897-5
    [28] SUN G Q, JIN Z, LIU Q X, et al. Pattern formation induced by cross-diffusion in a predator-prey system[J]. Chinese Physics B, 2008, 17(11): 3936-3941. doi: 10.1088/1674-1056/17/11/003
    [29] WANG F, YANG R. Spatial pattern formation driven by the cross-diffusion in a predator-prey model with Holling type functional response[J]. Chaos, Solitons & Fractals, 2023, 174: 113890.
    [30] CAI Y, ZHAO C, WANG W, et al. Dynamics of a Leslie-Gower predator-prey model with additive Allee effect[J]. Applied Mathematical Modelling, 2015, 39(7): 2092-2106. doi: 10.1016/j.apm.2014.09.038
  • 加载中
图(6)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  34
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-02-24
  • 刊出日期:  2026-01-01

目录

    /

    返回文章
    返回