• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有不确定参数的比例时滞忆阻神经网络的全局指数同步

郭昱贤 周立群

郭昱贤, 周立群. 一类具有不确定参数的比例时滞忆阻神经网络的全局指数同步[J]. 应用数学和力学, 2026, 47(1): 101-112. doi: 10.21656/1000-0887.460008
引用本文: 郭昱贤, 周立群. 一类具有不确定参数的比例时滞忆阻神经网络的全局指数同步[J]. 应用数学和力学, 2026, 47(1): 101-112. doi: 10.21656/1000-0887.460008
GUO Yuxian, ZHOU Liqun. Global Exponential Synchronization of a Class of Memristive Neural Networks With Proportional Delays and Uncertain Parameters[J]. Applied Mathematics and Mechanics, 2026, 47(1): 101-112. doi: 10.21656/1000-0887.460008
Citation: GUO Yuxian, ZHOU Liqun. Global Exponential Synchronization of a Class of Memristive Neural Networks With Proportional Delays and Uncertain Parameters[J]. Applied Mathematics and Mechanics, 2026, 47(1): 101-112. doi: 10.21656/1000-0887.460008

一类具有不确定参数的比例时滞忆阻神经网络的全局指数同步

doi: 10.21656/1000-0887.460008
基金项目: 

国家自然科学基金 11902221

国家自然科学基金 12101452

天津市自然科学基金 24JCYBJC00470

详细信息
    作者简介:

    郭昱贤(2002—),男,硕士生(E-mail: 2512752592@qq.com)

    通讯作者:

    周立群(1972—),女,教授,博士,硕士生导师(通信作者. E-mail: zhouliqun20000@163.com)

  • 中图分类号: O175.13

Global Exponential Synchronization of a Class of Memristive Neural Networks With Proportional Delays and Uncertain Parameters

  • 摘要: 研究了一类具有不确定参数的比例时滞忆阻神经网络的全局指数同步.首先,建立了驱动-响应系统的误差系统.其次,通过引入指数函数,设计了自适应控制器,根据系统切换跳的特征将误差系统分为四种情况进行分类讨论,构造适当的Lyapunov泛函,并结合均值不等式,得到了保证所研究系统全局指数同步的判定准则.同时考虑了全局指数同步退化为全局渐近同步的情况.最后,通过数值算例及仿真验证了所得准则的有效性.
  • 图  1  不加控制器时系统(19)和(20)的相图比较

    Figure  1.  Comparison of phase trajectories of systems (19) and (20) without controllers

    图  2  不加控制器、加自适应控制器以及加反馈控制器时系统(19)和(20)的时间响应曲线比较

    Figure  2.  Comparison of the time response curves of systems (19) and (20) without controllers, with feedback controllers and with adaptive controllers

  • [1] HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088-3092.
    [2] 张雅美, 郝涛, 尹四倍, 等. 具有时延和随机扰动的未知C-G神经网络的有限时间函数投影同步及其在保密通信中的应用[J]. 应用数学和力学, 2020, 41(12): 1405-1416. doi: 10.21656/1000-0887.410025

    ZHANG Yamei, HAO Tao, YIN Sibei, et al. Finite-time function projective synchronization of unknown Cohen-Grossberg neural networks with time delays and stochastic disturbances and its application in secure communication[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1405-1416. (in )Chinese) doi: 10.21656/1000-0887.410025
    [3] 胡博, 钱鑫. 基于人工智能的计算机图像自动识别[J]. 电子设计工程, 2024, 32(22): 191-195.

    HU Bo, QIAN Xin. Computer image automatic recognition based on artificial intelligence[J]. Electronic Design Engineering, 2024, 32(22): 191-195. (in )Chinese)
    [4] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558.
    [5] CHUA L O, YANG L. Cellular neural networks: theory[J]. IEEE Transactions on Circuits and Systems, 1988, 35(10): 1257-1272. doi: 10.1109/31.7600
    [6] ROSKA T, CHUA L O. Cellular neural networks with nonlinear and delay-type template elements[C]//IEEE International Workshop on Cellular Neural Networks and Their Applications. Budapest, Hungary: IEEE, 1990.
    [7] LI Y K, ZHU L F, LIU P. Existence and stability of periodic solutions of delayed cellular neural networks[J]. Nonlinear Analysis: Real World Applications, 2006, 7(2): 225-234. doi: 10.1016/j.nonrwa.2005.02.004
    [8] 李春美, 杨绪君, 吴香. 具有时变时滞的分数阶四元数神经网络的投影同步[J]. 应用数学和力学, 2023, 44(6): 708-718. doi: 10.21656/1000-0887.430228

    LI Chunmei, YANG Xujun, WU Xiang. Projective synchronization of fractional quaternion neural networks with time-varying delays[J]. Applied Mathematics and Mechanics, 2023, 44(6): 708-718. (in )Chinese) doi: 10.21656/1000-0887.430228
    [9] 刘飞扬, 李兵. 混合时滞复值神经网络的事件触发状态估计[J]. 应用数学和力学, 2022, 43(8): 911-919.

    LIU Feiyang, LI Bing. Event-based state estimation of complex-valued neural networks with mixed delays[J]. Applied Mathematics and Mechanics, 2022, 43(8): 911-919. (in )Chinese)
    [10] HU X F, WANG L M, ZHANG C K, et al. Fixed-time synchronization of fuzzy complex dynamical networks with reaction-diffusion terms via intermittent pinning control[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(4): 2307-2317. doi: 10.1109/TFUZZ.2024.3349599
    [11] CHUA L O. Memristor: the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519. doi: 10.1109/TCT.1971.1083337
    [12] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83. doi: 10.1038/nature06932
    [13] XIAO J Y, CHENG J, SHI K B, et al. A general approach to fixed-time synchronization problem for fractional-order multidimension-valued fuzzy neural networks based on memristor[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(4): 968-977. doi: 10.1109/TFUZZ.2021.3051308
    [14] ZHU S, SHEN Y C, MU C X, et al. Generalized-type multistability of almost periodic solutions for memristive Cohen-Grossberg neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 9483-9494. doi: 10.1109/TNNLS.2022.3233719
    [15] YAO W, WANG C, SUN Y, et al. Robust multimode function synchronization of memristive neural networks with parameter perturbations and time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 260-274. doi: 10.1109/TSMC.2020.2997930
    [16] REN F, JIANG M, XU H, et al. Quasi fixed-time synchronization of memristive Cohen-Grossberg neural networks with reaction-diffusion[J]. Neurocomputing, 2020, 415: 74-83. doi: 10.1016/j.neucom.2020.07.071
    [17] REN H W, PENG Z P, GU Y. Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control[J]. Neural Networks, 2020, 130: 165-175. doi: 10.1016/j.neunet.2020.07.002
    [18] WANG Q M, WANG L M, WEN W D, et al. Dynamical analysis and preassigned-time intermittent control of memristive chaotic system via T-S fuzzy method[J]. Chaos, 2025, 35(2): 023102. doi: 10.1063/5.0221159
    [19] 周立群. 具比例时滞递归神经网络的稳定性及其仿真与应用[M]. 北京: 机械工业出版社, 2019.

    ZHOU Liqun. Stability of Recurrent Neural Network With Proportional Delay and Its Simulation and Application[M]. Beijing: China Machine Press, 2019. (in )Chinese)
    [20] ZHANG Y K, ZHOU L Q. Stabilization and lag synchronization of proportional delayed impulsive complex-valued inertial neural networks[J]. Neurocomputing, 2022, 507: 428-440. doi: 10.1016/j.neucom.2022.08.027
    [21] ZHOU L Q, ZHAO Z X. Exponential synchronization and polynomial synchronization of recurrent neural networks with and without proportional delays[J]. Neurocomputing, 2020, 372: 109-116. doi: 10.1016/j.neucom.2019.09.046
    [22] JIA S C, HU C, YU J, et al. Asymptotical and adaptive synchronization of Cohen-Grossberg neural networks with heterogeneous proportional delays[J]. Neurocomputing, 2018, 275: 1449-1455. doi: 10.1016/j.neucom.2017.09.076
    [23] LI Q, ZHOUL Q. Global asymptotic synchronization of inertial memristive Cohen-Grossberg neural networks with proportional delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 123: 107295. doi: 10.1016/j.cnsns.2023.107295
    [24] DUAN L Y, LI J M. Fixed-time synchronization of fuzzy neutral-type BAM memristive inertial neural networks with proportional delays[J]. Information Sciences, 2021, 576: 522-541. doi: 10.1016/j.ins.2021.06.093
    [25] DING X S, CAO J D, ALSAEDI A, et al. Robust fixed-time synchronization for uncertain complex valued neural networks with discontinuous activation functions[J]. Neural Networks, 2017, 90: 42-55. doi: 10.1016/j.neunet.2017.03.006
    [26] ZHENG C, CAO J D. Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control[J]. Neurocomputing, 2014, 141: 153-159. doi: 10.1016/j.neucom.2014.03.042
    [27] DING S B, WANG Z S, NIU H S, et al. Stop and Go adaptive strategy for synchronization of delayed memristive recurrent neural networks with unknown synaptic weights[J]. Journal of the Franklin Institute, 2017, 354(12): 4989-5010. doi: 10.1016/j.jfranklin.2017.05.011
    [28] YUAN M M, WANG W P, WANG Z, et al. Exponential synchronization of delayed memristor-based uncertain complex-valued neural networks for image protection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 151-165. doi: 10.1109/TNNLS.2020.2977614
    [29] ZHANGL Z, YANG Y Q, WANG F, et al. Finite-time lag synchronization for memristive mixed delays neural networks with parameter mismatch[J]. Neural Processing Letters, 2018, 47: 365-389.
    [30] 王有刚, 武怀勤. 基于忆阻的时变时滞神经网络的自适应同步[J]. 晋中学院学报, 2017, 34(3): 15-20.

    WANG Yougang, WU Huaiqin. Adaptive synchronization of memristor-based chaotic neural networks with time-varying delays[J]. Journal of Jinzhong University, 2017, 34(3): 15-20. (in )Chinese)
  • 加载中
图(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  48
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-02-24
  • 刊出日期:  2026-01-01

目录

    /

    返回文章
    返回