• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向异形结构的共形点阵变密度调控设计方法

罗玮 冯少军 郝鹏 霍泽凯 高勇 焦世坤

罗玮, 冯少军, 郝鹏, 霍泽凯, 高勇, 焦世坤. 面向异形结构的共形点阵变密度调控设计方法[J]. 应用数学和力学, 2026, 47(1): 1-14. doi: 10.21656/1000-0887.460062
引用本文: 罗玮, 冯少军, 郝鹏, 霍泽凯, 高勇, 焦世坤. 面向异形结构的共形点阵变密度调控设计方法[J]. 应用数学和力学, 2026, 47(1): 1-14. doi: 10.21656/1000-0887.460062
LUO Wei, FENG Shaojun, HAO Peng, HUO Zekai, GAO Yong, JIAO Shikun. A Design Method for Conformal Lattice Variable Density Control of Irregular Structures[J]. Applied Mathematics and Mechanics, 2026, 47(1): 1-14. doi: 10.21656/1000-0887.460062
Citation: LUO Wei, FENG Shaojun, HAO Peng, HUO Zekai, GAO Yong, JIAO Shikun. A Design Method for Conformal Lattice Variable Density Control of Irregular Structures[J]. Applied Mathematics and Mechanics, 2026, 47(1): 1-14. doi: 10.21656/1000-0887.460062

面向异形结构的共形点阵变密度调控设计方法

doi: 10.21656/1000-0887.460062
(我刊编委郝鹏来稿)
基金项目: 

国家重点研发计划项目 2022YFF1400302

详细信息
    作者简介:

    罗玮(2001—),男,硕士生(E-mail: 254090887@mail.dlut.edu.cn)

    通讯作者:

    郝鹏(1986—),男,教授,博士,博士生导师(通信作者. E-mail: haopeng@dlut.edu.cn)

  • 中图分类号: O342

A Design Method for Conformal Lattice Variable Density Control of Irregular Structures

(Contributed by HAO Peng, M.AMM Editorial Board)
  • 摘要: 针对异形承载结构中存在的共形点阵建模填充复杂、大规模单胞导致设计变量激增、优化困难的问题,提出了一种基于函数描述的共形点阵变密度调控设计方法. 通过发展基于网格变形的共形点阵参数化建模方法,可实现异形结构的点阵快速填充;进一步提出了基于分段三次Hermite插值多项式的点阵单胞尺寸调控方法和基于代理模型的点阵杆径调控方法,可实现点阵的精细调控和设计变量降维;在此基础上,建立了基于自适应更新动态代理模型的点阵结构优化设计框架,实现了点阵调控参数的快速优化设计. 通过两个工程算例开展了算例验证,包括火箭有效载荷适配器应变能优化、飞行器异形承载舱段结构屈曲优化,综合计算结果表明了所提方法对于不同问题的有效性.
    1)  (我刊编委郝鹏来稿)
  • 图  1  点阵结构参数化建模流程

    Figure  1.  The parameterized modeling process for the lattice structure

    图  2  通过网格变形的点阵共形过程

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The lattice deformation process through grid deformation

    图  3  通过设计I-A线形状实现点阵单胞尺寸调控

    Figure  3.  Realization of the lattile unit cell size control by designing the shape of the I-A line

    图  4  I-A线与点阵单胞尺寸间的对应关系示意图[26]

    Figure  4.  Schematic of the correspondence between I-A lines and lattice cell sizes[26]

    图  5  代理模型与点阵杆径粗细间的对应关系示意图

    Figure  5.  Schematic of the correspondence between the proxy model and the thickness of the lattice rod diameter

    图  6  优化总体框架

    Figure  6.  The overall optimization framework

    图  7  点阵单胞悬垂角

    Figure  7.  The overhang angle of the lattice cell

    图  8  卫星火箭适配器结构

    Figure  8.  The satellite rocket adapter structure

    图  9  点阵夹芯圆台结构的应变能优化迭代图

    Figure  9.  Iterative diagram of strain energy optimization for the lattice sandwich truncated cone structure

    图  10  点阵夹芯椭圆舱段结构的屈曲优化模型

    Figure  10.  The buckling optimization model for lattice sandwich elliptical cabin structures

    图  11  点阵夹芯椭圆舱段结构的屈曲优化迭代图

    Figure  11.  Iterative diagram of buckling optimization for lattice sandwich elliptical cabin structures

    表  1  点阵夹芯圆台结构应变能优化结果

    Table  1.   Optimization results of strain energy for lattice sandwich truncated cone structures

    initial lattice structure optimized by the proposed method optimized by differential method
    lattice structure
    strain energy/mJ 1 645 1 248 1 330
    strain energy reduction rate/% - 24.13 19.15
    mass/kg 51.3 50.7 51.3
    θ/(°) 46.5 40.0 46.5
    number of iterations - 596 50
    number of analysis - 596 5 000
    下载: 导出CSV

    表  2  点阵夹芯椭圆舱段结构屈曲特征值优化结果

    Table  2.   Optimization results of buckling eigenvalues for lattice sandwich elliptical cabin structures

    initial lattice structure optimized with the proposed method
    lattice structure
    1st-order buckling eigenvalue 1.14 1.94
    eigenvalue increase rate/% - 70.2
    mass/kg 19.1 18.9
    θ/(°) 39.2 40.2
    number of iterations - 361
    下载: 导出CSV
  • [1] DU PLESSIS A, BROECKHOVEN C, YADROITSAVA I, et al. Beautiful and functional: a review of biomimetic design in additive manufacturing[J]. Additive Manufacturing, 2019, 27:408-427.
    [2] MACONACHIE T, LEARY M, LOZANOVSKI B, et al. SLM lattice structures: properties, performance, applications and challenges[J]. Materials & Design, 2019, 183:108137.
    [3] 张雨明, 吴锐. 我国3D打印技术研究及产业化发展现状[J]. 中国材料进展, 2018, 37(3): 237-240.

    ZHANG Yuming, WU Rui. Research and industrialization development status of 3D printing technology in China[J]. Materials China, 2018, 37(3): 237-240. (in Chinese)
    [4] YANG S, ZHAO Y F. Additive manufacturing-enabled design theory and methodology: a critical review[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80:327-342. doi: 10.1007/s00170-015-6994-5
    [5] SMITH M, GUAN Z, CANTWELL W J. Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique[J]. International Journal of Mechanical Sciences, 2013, 67:28-41.
    [6] 柏龙, 熊飞, 陈晓红, 等. SLM制备的Ti6Al4V轻质点阵结构多目标结构优化设计研究[J]. 机械工程学报, 2018, 54(5): 156-165.

    BAI Long, XIONG Fei, CHEN Xiaohong, et al. Multi-objective structural optimization design of Ti6Al4V lattice structure formed by SLM[J]. Journal of Mechanical Engineering, 2018, 54(5): 156-165. (in Chinese)
    [7] WETTERGREEN M A, BUCKLEN B S, SUN W, et al. Computer-aided tissue engineering of a human vertebral body[J]. Annals of Biomedical Engineering, 2005, 33(10): 1333-1343. doi: 10.1007/s10439-005-6744-1
    [8] WANG H Q, CHEN Y, ROSEN D W. A hybrid geometric modeling method for large scale conformal cellular structures[C]// 25 th Computers and Information in Engineering Conference, Parts A and B. Long Beach, California, USA. ASMEDC, 2005, 3:421-427.
    [9] LIANG Y, ZHAO F, YOO D J, et al. Design of conformal lattice structures using the volumetric distance field based on parametric solid models[J]. Rapid Prototyping Journal, 2020, 26(6): 1005-1017.
    [10] CHEN W J, ZHENG X N, LIU S T. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing[J]. Materials, 2018, 11(11): 2073.
    [11] VOGIATZIS P, MA M, CHEN S K, et al. Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328:477-497. doi: 10.1016/j.cma.2017.09.012
    [12] OH S H, HA J W, PARK K. Adaptive conformal cooling of injection molds using additively manufactured TPMS structures[J]. Polymers, 2022, 14(1): 181. doi: 10.3390/polym14010181
    [13] LI D W, LIAO W H, DAI N, et al. Anisotropic design and optimization of conformal gradient lattice structures[J]. Computer-Aided Design, 2020, 119:102787. doi: 10.1016/j.cad.2019.102787
    [14] WANG H Q, ROSEN D W. Parametric modeling method for truss structures[C]// 22 nd Computers and Information in Engineering Conference. Montreal, Quebec, Canada. ASMEDC, 2002, 1:759-767.
    [15] ALZAHRANI M, CHOI S K, ROSEN D W. Design of truss-like cellular structures using relative density mapping method[J]. Materials & Design, 2015, 85:349-360.
    [16] WANG Y, XU H, PASINI D. Multiscale isogeometric topology optimization for lattice materials[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 316:568-585. doi: 10.1016/j.cma.2016.08.015
    [17] HUANG X, RADMAN A, XIE Y M. Topological design of microstructures of cellular materials for maximum bulk or shear modulus[J]. Computational Materials Science, 2011, 50(6): 1861-1870. doi: 10.1016/j.commatsci.2011.01.030
    [18] WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization, 2018, 58:35-50. doi: 10.1007/s00158-018-2009-0
    [19] CHEN W, TONG L, LIU S. Concurrent topology design of structure and material using a two-scale topology optimization[J]. Computers & Structures, 2017, 178:119-128.
    [20] NGUYEN J, PARK S, ROSEN D. Heuristic optimization method for cellular structure design of light weight components[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14:1071-1078. doi: 10.1007/s12541-013-0144-5
    [21] 冯琪翔. 基于选择性激光熔化的金属多孔结构力学特性及其变密度设计方法研究[D]. 重庆: 重庆大学, 2017.

    FENG Qixiang. A study on the mechanical properties of metallic porous structures fabricated using selective laser melting and its variable-density design method[D]. Chongqing: Chongqing University, 2017. (in Chinese)
    [22] JIN X, LI G X, ZHANG M. Optimal design of three-dimensional non-uniform nylon lattice structures for selective laser sintering manufacturing[J]. Advances in Mechanical Engineering, 2018, 10(7): 1687814018790833. doi: 10.1177/1687814018790833
    [23] 易辉成, 龚艳丽, 李康. 基于应力分布的变密度点阵结构优化设计[J]. 机械设计, 2023, 40(4): 105-111.

    YI Huicheng, GONG Yanli, LI Kang. Structure optimal design of variable density lattice based on stress distribution[J]. Journal of Machine Design, 2023, 40(4): 105-111. (in Chinese)
    [24] TERRIAULT P, BRAILOVSKI V. Modeling and simulation of large, conformal, porosity-graded and lightweight lattice structures made by additive manufacturing[J]. Finite Elements in Analysis and Design, 2018, 138:1-11.
    [25] 郑啸男, 程春红, 徐文华. 基于MIST方法的梯度点阵结构优化设计方法[J]. 电子机械工程, 2024, 40(3): 28-32.

    ZHENG Xiaonan, CHENG Chunhong, XU Wenhua. Optimization method for gradient lattice structure based on MIST[J]. Electro-Mechanical Engineering, 2024, 40(3): 28-32. (in Chinese)
    [26] 刘大川. 曲线加筋结构的智能优化设计研究[D]. 大连: 大连理工大学, 2023.

    LIU Dachuan. Research on intelligent optimization design of curved stiffened structures[D]. Dalian: Dalian University of Technology, 2023. (in Chinese)
    [27] FRITSCH F N, CARLSON R E. Monotone piecewise cubic interpolation[J]. SIAM Journal on Numerical Analysis, 1980, 17(2): 238-246. doi: 10.1137/0717021
    [28] 汪大典. 基于Kriging代理模型的结构非概率可靠性分析方法研究[D]. 成都: 电子科技大学, 2022.

    WANG Dadian. Research on non-probabilistic reliability analysis method of structure based on Kriging surrogate model[D]. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese)
    [29] LEARY M, BABAEE M, BRANDT M, et al. Feasible build orientations for self-supporting fused deposition manufacture: a novel approach to space-filling tesselated geometries[J]. Advanced Materials Research, 2013, 633:148-168. doi: 10.4028/www.scientific.net/AMR.633.148
    [30] 杨鑫, 马文君, 王岩, 等. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.

    YANG Xin, MA Wenjun, WANG Yan, et al. Research progress of metal lattice porous materials for additive manufacturing[J]. Materials Reports, 2021, 35(7): 7114-7120. (in Chinese)
    [31] 胡杰, 刘昆, 杜训柏, 等. U型激光焊接夹层板极限强度试验研究[J]. 舰船科学技术, 2016, 38(12): 53-58.

    HU Jie, LIU Kun, DU Xunbo, et al. Ultimate strength tests of laser-welded corrugated-U type-core sandwich panels[J]. Ship Science and Technology, 2016, 38(12): 53-58. (in Chinese)
    [32] YIN S, CHEN H Y, WU Y B, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood[J]. Composite Structures, 2018, 201:131-140. doi: 10.1016/j.compstruct.2018.06.038
    [33] WANG C, ZHU J, WU M, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J]. Chinese Journal of Aeronautics, 2021, 34(5): 386-398. doi: 10.1016/j.cja.2020.08.015
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  51
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-04-21
  • 刊出日期:  2026-01-01

目录

    /

    返回文章
    返回