|
[2]DRAZIN P J, JOHNSON R S. Solitons: An Introduction[M]. Cambridge: Cambridge University Press, 1989.
|
|
BRENNER P, VON WAHL W. Global classical solutions of nonlinear wave equations[J]. Mathematische Zeitschrift,1981,176(1): 87-121.
|
|
[3]WAZWAZ A M. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(5): 889-901.
|
|
[4]王媋瑗, 李宏, 何斯日古楞. 非线性sine-Gordon方程的连续时空混合有限元方法[J]. 应用数学和力学, 2024,45(4): 490-501. (WANG Chunyuan, LI Hong, HE Siriguleng. A continuous space-time mixed finite element method for sine-Gordon equations[J]. Applied Mathematics and Mechanics,2024,45(4): 490-501. (in Chinese))
|
|
[5]张宇, 邓子辰, 胡伟鹏. Sine-Gordon方程的多辛Leap-frog格式[J]. 应用数学和力学, 2013,34(5): 437-444.(ZHANG Yu, DENG Zichen, HU Weipeng. Multi-symplectic leap-frog scheme for sine-Gordon equation[J]. Applied Mathematics and Mechanics,2013,34(5): 437-444. (in Chinese))
|
|
[6]LI S, VU-QUOC L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation[J]. SIAM Journal on Numerical Analysis,1995,32(6): 1839-1875.
|
|
[7]MCLACHLAN R I, QUISPEL G R. Discrete gradient methods have an energy conservation law[J]. Discrete and Continuous Dynamical Systems,2014,34(3): 1099-1104.
|
|
[8]WANG B, WU X Y. The formulation and analysis of energy-preserving schemes for solving high dimensional nonlinear Klein-Gordon equations[J]. IMA Journal of Numerical Analysis,2019,39(4): 2016-2044.
|
|
[9]BRUGNANO L, FRASCA CACCIA G, IAVERNARO F. Energy conservation issues in the numerical solution of the semilinear wave equation[J]. Applied Mathematics and Computation,2015,270: 842-870.
|
|
[10]BRUGNANO L, ZHANG C J, LI D F. A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrdinger equation with wave operator[J]. Communications in Nonlinear Science and Numerical Simulation,2018,60: 33-49.
|
|
[11]QUISPEL G R W, MCLAREN D I. A new class of energy-preserving numerical integration methods[J]. Journal of Physics A: Mathematical General,2008,41(4): 045206.
|
|
[12]YANG X, ZHAO J, WANG Q. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method[J]. Journal of Computational Physics,2017,333: 104-127.
|
|
[13]SHEN J, XU J, YANG J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics,2018,353: 407-416.
|
|
[14]CAI W, JIANG C, WANG Y, et al. Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions[J]. Journal of Computational Physics,2019,395: 166-185.
|
|
[15]JIANG C, CAI W, WANG Y. A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach[J]. Journal of Scientific Computing,2019,80(3): 1629-1655.
|
|
[16]DENG D W, WANG Q H. A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations[J]. Communications in Nonlinear Science and Numerical Simulation,2023,117: 106916.
|
|
[17]DENG D W, CHEN J L, WANG Q H. Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations[J]. Numerical Algorithms,2023,93: 1045-1081.
|
|
[18]ZHANG X H, MEI L Q, GUO S M. Energy-conserving SAV-Hermite-Galerkin spectral scheme with time adaptive method for coupled nonlinear Klein-Gordon system in multi-dimensional unbounded domains[J]. Journal of Computational and Applied Mathematics,2025,454: 116204.
|
|
[19]CHENG Q, LIU C, SHEN J. A new Lagrange multiplier approach for gradient flows[J]. Computer Methods in Applied Mechanics and Engineering,2020,367: 113070.
|
|
[20]WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films[J]. Acta Materialia,2003,51(14): 4209-4223.
|
|
[21]KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]. Physical Review E: Statistical Physics,Plasmas,Fluids and Related Interdisciplinary Topics,1996,53(4): R3017-R3020.
|
|
[22]BOETTINGER W J, WARREN J A, BECKERMANN C, KARMA A. Phase-field simulation of solidification[J]. Annual Review of Materials Research,2002,32: 163-194.
|
|
[23]孙志忠. 偏微分方程数值解法[M]. 第2版. 北京: 科学出版社, 2012.(SUN Zhizhong. Numerical Solution of Partial Differential Equation[M]. 2nd ed. Beijing: Science Press, 2012. (in Chinese))
|