An Efficient Energy-Preserving Numerical Algorithm for Nonlinear Wave Equations
-
摘要: 将降阶法、Lagrange乘子方法和紧致差分法相结合,对非线性波动方程建立一个时间二阶和空间四阶收敛精度的保能量数值算法,证明所提算法保持原始能量守恒性质,并给出相应算法的计算步骤.数值算例验证所提算法的正确性和有效性.
-
关键词:
- 非线性波动方程 /
- 降阶法 /
- Lagrange乘子方法 /
- 紧致差分法 /
- 保能量数值算法
Abstract: An energy-preserving numerical algorithm, which is 2nd-order in time and 4th-order in space, for nonlinear wave equations was developed based on the order reduction method, the Lagrange multiplier method and the compact difference method. The discrete original energy conservation property of the suggested algorithm was proven. The computational procedure of the associated algorithm was exhibited. Numerical results validate the exactness and effectiveness of the proposed algorithm. -
算法 差分格式(16)—(20) 输入 u0, v0, β, a, b, m, n, T 输出 u, v, η 1 for k=0: n-1 do 2 通过式(27)—(28)计算pk+1, qk+1 3 使用Newton迭代法求解式(29),得到ηk+1 4 将ηk+1代入式(26),计算得到uk+1 5 由式(25)计算得vk+1 6 将uk+1, vk+1, ηk+1分别保存到u, v, η 7 end for 8 return u, v, η 表 1 取不同步长时数值解的误差和空间收敛阶(τ=h2)
Table 1. Errors and spatial convergence orders of the solution with different steps (τ=h2)
h=1/4 h=1/8 h=1/16 h=1/32 μ=0.3 Mu 1.38E-3 1.32E-4 8.73E-6 5.51E-7 Rl∞, h - 3.39 3.91 3.99 Lu 2.98E-3 2.89E-4 1.92E-5 1.21E-6 Rl2, h - 3.37 3.91 3.99 Hu 4.12E-3 4.00E-4 2.66E-5 1.68E-6 RH1, h - 3.36 3.91 3.99 μ=0.5 Mu 1.12E-3 7.60E-5 4.83E-6 3.02E-7 Rl∞, h - 3.89 3.98 4.00 Lu 2.51E-3 1.68E-4 1.06E-5 6.67E-7 Rl2, h - 3.90 3.98 4.00 Hu 3.54E-3 2.37E-4 1.50E-5 9.43E-7 RH1, h - 3.90 3.98 4.00 μ=0.7 Mu 6.77E-4 4.48E-5 2.84E-6 1.78E-7 Rl∞, h - 3.92 3.98 3.99 Lu 1.54E-3 1.02E-4 6.47E-6 4.06E-7 Rl2, h - 3.92 3.98 3.99 Hu 2.08E-3 1.38E-4 8.76E-6 5.50E-7 RH1, h - 3.91 3.98 3.99 表 2 取不同步长时数值解的误差和时间收敛阶(τ=h)
Table 2. Errors and temporal convergence orders of the solution with different steps (τ=h)
h=1/20 h=1/40 h=1/80 h=1/160 μ=0.3 Mu 9.71E-4 3.08E-4 8.50E-5 2.19E-5 Rl∞, τ - 1.66 1.86 1.95 Lu 2.16E-3 6.89E-4 1.90E-4 4.91E-5 Rl2, τ - 1.65 1.86 1.95 Hu 3.03E-3 9.64E-4 2.66E-4 6.87E-5 RH1, τ - 1.65 1.86 1.95 μ=0.5 Mu 7.48E-4 1.95E-4 4.96E-5 1.25E-5 Rl∞, τ - 1.94 1.97 1.99 Lu 1.62E-3 4.21E-4 1.07E-4 2.69E-5 Rl2, τ - 1.95 1.98 1.99 Hu 2.28E-3 5.90E-4 1.50E-4 3.78E-5 RH1, τ - 1.95 1.98 1.99 μ=0.7 Mu 4.41E-4 1.13E-4 2.87E-5 7.23E-6 Rl∞, τ - 1.96 1.98 1.99 Lu 9.94E-4 2.56E-4 6.50E-5 1.64E-5 Rl2, τ - 1.96 1.98 1.99 Hu 1.34E-3 3.45E-4 8.76E-5 2.21E-5 RH1, τ - 1.95 1.98 1.99 表 3 不同数值方法的最大误差和CPU时间(τ=1/600)
Table 3. Maximum errors and CPU times of different numerical methods (τ=1/600)
method h 1/2 1/4 1/8 1/16 multi-symplectic leap-frog scheme[5] Mu 1.902 359E-2 4.763 517E-3 1.207 190E-3 3.020 248E-4 CPU time 0.001 1 0.002 5 0.005 4 0.008 7 local energy-preserving scheme[15] Mu 1.902 355E-2 4.763 503E-3 1.207 182E-3 3.020 184E-4 CPU time 0.071 7 0.309 2 1.659 8 8.765 4 Du Fort-Frankel scheme[17] Mu 1.902 337E-2 4.763 032E-3 1.205 583E-3 3.045 466E-4 CPU time 0.002 5 0.005 7 0.010 0 0.017 0 energy-preserving nonlinear difference scheme[6] Mu 1.902 357E-2 4.763 510E-3 1.207 189E-3 3.020 245E-4 CPU time 0.002 2 0.005 1 0.009 8 0.016 1 our scheme (16)—(20) Mu 1.364 679E-3 7.886 652E-5 4.756 628E-6 2.134 643E-7 CPU time 0.014 2 0.033 7 0.365 1 1.151 1 -
[1] BRENNER P, VON WAHL W. Global classical solutions of nonlinear wave equations[J]. Mathematische Zeitschrift, 1981, 176(1): 87-121. doi: 10.1007/BF01258907 [2] DRAZIN P J, JOHNSON R S. Solitons: An Introduction[M]. Cambridge: Cambridge University Press, 1989. [3] WAZWAZ A M. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(5): 889-901. doi: 10.1016/j.cnsns.2006.08.005 [4] 王媋瑗, 李宏, 何斯日古楞. 非线性sine-Gordon方程的连续时空混合有限元方法[J]. 应用数学和力学, 2024, 45(4): 490-501.WANG Chunyuan, LI Hong, HE Siriguleng. A continuous space-time mixed finite element method for sine-Gordon equations[J]. Applied Mathematics and Mechanics, 2024, 45(4): 490-501. (in )Chinese) [5] 张宇, 邓子辰, 胡伟鹏. Sine-Gordon方程的多辛Leap-frog格式[J]. 应用数学和力学, 2013, 34(5): 437-444. doi: 10.21656/1000-0887.370164ZHANG Yu, DENG Zichen, HU Weipeng. Multi-symplectic leap-frog scheme for sine-Gordon equation[J]. Applied Mathematics and Mechanics, 2013, 34(5): 437-444. (in )Chinese) doi: 10.21656/1000-0887.370164 [6] LI S, VU-QUOC L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation[J]. SIAM Journal on Numerical Analysis, 1995, 32(6): 1839-1875. doi: 10.1137/0732083 [7] MCLACHLAN R I, QUISPEL G R. Discrete gradient methods have an energy conservation law[J]. Discrete and Continuous Dynamical Systems, 2014, 34(3): 1099-1104. doi: 10.3934/dcds.2014.34.1099 [8] WANG B, WU X Y. The formulation and analysis of energy-preserving schemes for solving high dimensional nonlinear Klein-Gordon equations[J]. IMA Journal of Numerical Analysis, 2019, 39(4): 2016-2044. doi: 10.1093/imanum/dry047 [9] BRUGNANO L, FRASCA CACCIA G, IAVERNARO F. Energy conservation issues in the numerical solution of the semilinear wave equation[J]. Applied Mathematics and Computation, 2015, 270 : 842-870. doi: 10.1016/j.amc.2015.08.078 [10] BRUGNANO L, ZHANG C J, LI D F. A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 60: 33-49. doi: 10.1016/j.cnsns.2017.12.018 [11] QUISPEL G R W, MCLAREN D I. A new class of energy-preserving numerical integration methods[J]. Journal of Physics A: Mathematical General, 2008, 41(4): 045206. doi: 10.1088/1751-8113/41/4/045206 [12] YANG X, ZHAO J, WANG Q. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method[J]. Journal of Computational Physics, 2017, 333: 104-127. doi: 10.1016/j.jcp.2016.12.025 [13] SHEN J, XU J, YANG J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics, 2018, 353: 407-416. doi: 10.1016/j.jcp.2017.10.021 [14] CAI W, JIANG C, WANG Y, et al. Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions[J]. Journal of Computational Physics, 2019, 395: 166-185. doi: 10.1016/j.jcp.2019.05.048 [15] JIANG C, CAI W, WANG Y. A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach[J]. Journal of Scientific Computing, 2019, 80(3): 1629-1655. doi: 10.1007/s10915-019-01001-5 [16] DENG D W, WANG Q H. A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 117: 106916. doi: 10.1016/j.cnsns.2022.106916 [17] DENG D W, CHEN J L, WANG Q H. Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations[J]. Numerical Algorithms, 2023, 93(3): 1045-1081. doi: 10.1007/s11075-022-01453-1 [18] ZHANG X H, MEI L Q, GUO S M. Energy-conserving SAV-Hermite-Galerkin spectral scheme with time adaptive method for coupled nonlinear Klein-Gordon system in multi-dimensional unbounded domains[J]. Journal of Computational and Applied Mathematics, 2025, 454: 116204. doi: 10.1016/j.cam.2024.116204 [19] CHENG Q, LIU C, SHEN J. A new Lagrange multiplier approach for gradient flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113070. doi: 10.1016/j.cma.2020.113070 [20] WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films[J]. Acta Materialia, 2003, 51(14): 4209-4223. doi: 10.1016/S1359-6454(03)00238-6 [21] KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]. Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics, 1996, 53(4): R3017-R3020. [22] BOETTINGER W J, WARREN J A, BECKERMANN C, KARMA A. Phase-field simulation of solidification[J]. Annual Review of Materials Research, 2002, 32: 163-194. doi: 10.1146/annurev.matsci.32.101901.155803 [23] 孙志忠. 偏微分方程数值解法[M]. 第2版. 北京: 科学出版社, 2012.SUN Zhizhong. Numerical Solution of Partial Differential Equation[M]. 2nd ed. Beijing: Science Press, 2012. (in )Chinese) -
下载:
渝公网安备50010802005915号