• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数值模拟和决策树回归的金属切削力学性能预测

程一晋 冯志强 李燕

程一晋, 冯志强, 李燕. 基于数值模拟和决策树回归的金属切削力学性能预测[J]. 应用数学和力学, 2026, 47(1): 32-45. doi: 10.21656/1000-0887.460102
引用本文: 程一晋, 冯志强, 李燕. 基于数值模拟和决策树回归的金属切削力学性能预测[J]. 应用数学和力学, 2026, 47(1): 32-45. doi: 10.21656/1000-0887.460102
CHENG Yijin, FENG Zhiqiang, LI Yan. Mechanical Property Prediction of Metal Cutting Based on Numerical Simulation and Decision Tree Regression[J]. Applied Mathematics and Mechanics, 2026, 47(1): 32-45. doi: 10.21656/1000-0887.460102
Citation: CHENG Yijin, FENG Zhiqiang, LI Yan. Mechanical Property Prediction of Metal Cutting Based on Numerical Simulation and Decision Tree Regression[J]. Applied Mathematics and Mechanics, 2026, 47(1): 32-45. doi: 10.21656/1000-0887.460102

基于数值模拟和决策树回归的金属切削力学性能预测

doi: 10.21656/1000-0887.460102
基金项目: 

国家自然科学基金(12372142

12572232)

详细信息
    作者简介:

    程一晋(1996—),男,博士(E-mail: yijin_cheng@my.swjtu.edu.cn);冯志强(1963—),男,教授(通信作者. E-mail: zhiqiang.feng@univ-evry.fr);李燕(1991—),女,副教授(E-mail: yanli@swjtu.edu.cn).

    通讯作者:

    冯志强(1963—),男,教授(通信作者. E-mail: zhiqiang.feng@univ-evry.fr)

  • 中图分类号: O343.3

Mechanical Property Prediction of Metal Cutting Based on Numerical Simulation and Decision Tree Regression

Funds: 

The National Science Foundation of China(12372142

12572232)

  • 摘要: 快速预测金属切削的各种力学性能对工业制造的优化设计和产能提高十分关键.当前相关预测模型通常需要昂贵且耗时的实验和分析过程.构建了一种基于金属切削模拟和决策树回归(decision tree regression, DTR)的预测模型,用于获取不同切削工况下的力学性能.首先,采用自适应光滑粒子流体动力学(adaptive smoothed particle hydrodynamics, ASPH)模拟金属切削过程,捕获了不同模拟参数下的多种力学性能,组成2 000种切削工况的模拟数据集;其次,利用DTR算法学习模拟数据集,训练和构建金属切削预测模型,并通过交叉验证和网格搜索评估了不同剪枝策略下预测模型的效果.结果表明,建立的预测模型可以快速地预测不同模拟参数下的多种力学性能,适宜的剪枝策略可以提升预测模型的准确度、泛化能力和稳定性.
  • MOHANTA D K, PANI B, SAHOO B, et al. A critical study on computation of cutting forces in metal cutting[J]. Journal of Physics: Conference Series,2021,2070(1): 012166.
    [2]JAMWAL A, AGRAWAL R, SHARMA M, et al. Application of optimization techniques in metal cutting operations: a bibliometric analysis[J]. Materials Today: Proceedings,2021,38: 365-370.
    [3]张建飞. Ti6Al4V高速切削过程有限元模拟及切削参数优化[D]. 昆明: 昆明理工大学, 2017. (ZHANG Jianfei. Finite element simulation of high speed machining Ti6Al4V and optimization of cutting parameters[D]. Kunming: Kunming University of Science and Technology, 2017. (in Chinese))
    [4]WEN D Y, WAN M, REN Y Y, et al. Material piling up and spreading effects in the cutting processes with small feed rates[J]. Mechanical Systems and Signal Processing,2022,171: 108839.
    [5]WEI X Y, MIAO E M, YE H H. Analytical prediction of three dimensional chatter stability considering multiple parameters in milling[J]. International Journal of Precision Engineering and Manufacturing,2022,23(7): 711-720.
    [6]冯广贵. 考虑切削速度的铣削力建模方法与实验研究[D]. 武汉: 华中科技大学, 2022. (FENG Guanggui. A dissertation submitted in partial fulfillment of the requirements for the professional master degree[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese))
    [7]TAWARA D, TAKANO N, KINOSHITA H, etal. Stochastic multi-scale finite element analysis of the drilling force of trabecular bone during oral implant surgery[J]. International Journal of Applied Mechanics,2016,8(6): 1650075.
    [8]CARBONELL J M, RODRGUEZ J M, OATE E. Modelling 3D metal cutting problems with the particle finite element method[J]. Computational Mechanics,2020,66(3): 603-624.
    [9]CHENG W, OUTEIRO J C. Modelling orthogonal cutting of Ti-6Al-4V titanium alloy using a constitutive model considering the state of stress[J]. The International Journal of Advanced Manufacturing Technology,2022,119(7): 4329-4347.
    [10]DU H H, SUET T, YIN T F, ET al. Microstructured surface generation and cutting force prediction of pure titanium TA2[J]. Precision Engineering,2022,75: 101-110.
    [11]WANG H, DONG Z, YUAN S, et al. Effects of tool geometry on tungsten removal behavior during nano-cutting[J]. International Journal of Mechanical Sciences,2022,225: 107384.
    [12]AJITH ARUL DANIEL S, PUGAZHENTHI R, KUMAR R, et al. Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis[J]. Defence Technology,2019,15(4): 545-556.
    [13]赵海越, 曹岩, 黄亮, 等. 基于遗传算法的ZL205A铝合金切削参数多目标优化[J]. 兵器材料科学与工程, 2023,46(5): 58-65. (ZHAO Haiyue, CAO Yan, HUANG Liang, et al. Multi-objective optimization of ZL205A aluminum alloy cutting parameters based on genetic algorithm[J]. Ordnance Material Science and Engineering,2023,46(5): 58-65. (in Chinese))
    [14]XIE J, HU P, CHEN J, et al. Deep learning-based instantaneous cutting force modeling of three-axis CNC milling[J]. International Journal of Mechanical Sciences,2023,246: 108153.
    [15]BUCHKREMER S, KLOCKE F, LUNG D. Analytical study on the relationship between chip geometry and equivalent strain distribution on the free surface of chips in metal cutting[J]. International Journal of Mechanical Sciences,2014,85: 88-103.
    [16]HU C, ZHUANG K, WENG J, et al. Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip-line field model[J]. International Journal of Mechanical Sciences,2020,167: 105273.
    [17]CHEN Y, WANG J, AN Q. Mechanisms and predictive force models for machining with rake face textured cutting tools under orthogonal cutting conditions[J]. International Journal of Mechanical Sciences,2021,195: 106246.
    [18]LI Y, ZHANG X, WANG C. Cutting force prediction model for elliptical vibration cutting SiCp/Al based on three-phase friction theory[J]. Applied Sciences,2021,11(22): 10737.
    [19]JIN X, ALTINTAS Y. Prediction of micro-milling forces with finite element method[J]. Journal of Materials Processing Technology,2012,212(3): 542-552.
    [20]AYDIN M, KKL U. Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy[J]. Simulation Modelling Practice and Theory,2020,100: 102039.
    [21]OJAL N, COPENHAVER R, CHERUKURI H P, et al. A realistic full-scale 3D modeling of turning using coupled smoothed particle hydrodynamics and finite element method for predicting cutting forces[J]. Journal of Manufacturing and Materials Processing,2022,6(2): 33.
    [22]CHENG Y, LI Y, TAO L, et al. An adaptive smoothed particle hydrodynamics for metal cutting simulation[J]. Acta Mechanica Sinica,2022,38(10): 422126.
    [23]KILUNDU B, DEHOMBREUX P, CHIEMENTIN X. Tool wear monitoring by machine learning techniques and singular spectrum analysis[J]. Mechanical Systems and Signal Processing,2011,25(1): 400-415.
    [24]陶耀东, 曾广圣, 李宁. 基于回归树和AdaBoost方法的刀具磨损评估[J]. 计算机系统应用, 2017,26(12): 212-219. (TAO Yaodong, ZENG Guangsheng, LI Ning. Tool wear evaluation based on decision tree regression and AdaBoost algorithm[J]. Computer Systems & Applications,2017,26(12): 212-219. (in Chinese))
    [25]SANJAY C, ALSAMHAN M A K A M. Experimental analysis of machining parameter for 625 alloy using multi objective genetic algorithm and machine learning techniques[J]. Journal of the Balkan Tribological Association,2021,27(6): 1040-1059.
    [26]SIMA M, TUGRUL .Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture,2010,50(11): 943-960.
    [27]LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal,1977,82: 1013.
    [28]GINGOLD R A, MONAGHAN J J. Monthly notices of the royal astronomical society[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389.
    [29]LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and Recent developments[J]. Archives of Computational Methods in Engineering,2010,17(1): 25-76.
    [30]LI G, BELYTSCHKO T. Element-free Galerkin method for contact problems in metal forming analysis[J]. Engineering Computations,2001,18(1/2): 62-78.
    [31]TAYLOR G I, QUINNEY H. The latent energy remaining in a metal after cold working[J]. Proceedings of the Royal Society of London (Series A): Containing Papers of a Mathematical and Physical Character,1934,143(849): 307-326.
    [32]MONAGHAN J J. On the problem of penetration in particle methods[J]. Journal of Computational Physics,1989,82(1): 1-15.
    [33]BREIMAN L. Classification and Regression Trees[M]. 1st ed. Routledge, 1984.
    [34]魏贞原. 机器学习[M]. 北京: 电子工业出版社, 2018: 229. (WEI Zhenyuan. Machine Learning[M]. Beijing: Publishing House of Electronics Industry, 2018: 229. (in Chinese))
    [35]HASTIE T, TIBSHIRANI R, FRIEDMAN J H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M]. 2nd ed. New York: Springer, 2009.
    [36]PATRO S G K, SAHU K K. Normalization: a preprocessing stage[J]. International Advanced Research Journal in Science, Engineering and Technology,2015,2(3): 20-22. DOI: 10.17148/IARJSET.2015.2305.
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-07-30
  • 网络出版日期:  2026-01-21
  • 刊出日期:  2026-01-01

目录

    /

    返回文章
    返回