留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘弹性流体流经竖直表面时的瞬时自然对流

H·M·杜威瑞 R·A·丹赛 A·J·千姆克哈 M·S·艾伯德尔-亚博

H·M·杜威瑞, R·A·丹赛, A·J·千姆克哈, M·S·艾伯德尔-亚博. 粘弹性流体流经竖直表面时的瞬时自然对流[J]. 应用数学和力学, 2010, 31(5): 526-532. doi: 10.3879/j.issn.1000-0887.2010.05.003
引用本文: H·M·杜威瑞, R·A·丹赛, A·J·千姆克哈, M·S·艾伯德尔-亚博. 粘弹性流体流经竖直表面时的瞬时自然对流[J]. 应用数学和力学, 2010, 31(5): 526-532. doi: 10.3879/j.issn.1000-0887.2010.05.003
H. M. Duwairi, Rebhi. A. Damseh, A. J. Chamkha, Mu'tasim S. Abdel-Jaber. Transient Free Convection Flow of a Visco-Elastic Fluid Over a Vertical Surface[J]. Applied Mathematics and Mechanics, 2010, 31(5): 526-532. doi: 10.3879/j.issn.1000-0887.2010.05.003
Citation: H. M. Duwairi, Rebhi. A. Damseh, A. J. Chamkha, Mu'tasim S. Abdel-Jaber. Transient Free Convection Flow of a Visco-Elastic Fluid Over a Vertical Surface[J]. Applied Mathematics and Mechanics, 2010, 31(5): 526-532. doi: 10.3879/j.issn.1000-0887.2010.05.003

粘弹性流体流经竖直表面时的瞬时自然对流

doi: 10.3879/j.issn.1000-0887.2010.05.003
详细信息
  • 中图分类号: O357.4

Transient Free Convection Flow of a Visco-Elastic Fluid Over a Vertical Surface

  • 摘要: 静止流体中,在一个竖直的、不可渗透的等温表面附近,研究粘弹性边界层的流动及其热传导.得到其控制方程,并利用MackCormak技术对其进行数值求解.与先前发表的关于该问题特例的结果相比较,有着很好的一致性.对于不同的粘弹性参数值,图示了速度和温度分布、边界层厚度、Nusselt数、局部摩擦因数等典型结果.一般而言,粘弹性流体与Newton流体相比较,由于拉应力的促进作用,流体动力边界层里的速度是增加的,热边界层里的温度是下降的.粘弹性参数值越高,摩擦因数和传热系数越高.
  • [1] Rajagopal K R, Na T Y, Gupta A S. Flow of a viscoelsatic fluid over a stretching sheet[J]. Rheol Acta, 1984, 23: 213-215. doi: 10.1007/BF01332078
    [2] Rajagopal K R, Na T Y, Gupta A S. A non-similar boundary layer on a stretching sheet in a non-Newtonian fluid with uniform free stream[J]. J Math Phys Sci, 1987, 21(2): 189-200.
    [3] Dandapat B S, Gupta A S. Flow and heat transfer in a viscoelsatic fluid over a stretching sheet[J]. Int J Non-Linear Mech, 1989, 24(3): 215-219. doi: 10.1016/0020-7462(89)90040-1
    [4] Rollins D, Vajravelu K. Heat transfer in a second-order fluid over a continuous stretching surface[J]. Acta Mech, 1991, 89(1/4): 167-178. doi: 10.1007/BF01171253
    [5] Anderson H I. MHD flow of a viscoelsatic fluid past a stretching surface[J]. Acta Mech, 1992, 95: 227-230. doi: 10.1007/BF01170814
    [6] Lawrence P S, Rao B N. Heat transfer in the flow of a viscoelsatic fluid over a stretching sheet[J]. Acta Mech, 1992, 93: 53-61. doi: 10.1007/BF01182572
    [7] Char M I. Heat and mass transfer in a hydromagnetic flow of viscoelsatic fluid over a stretching sheet[J]. J Math Anal Appl, 1994, 186(3): 674-689. doi: 10.1006/jmaa.1994.1326
    [8] Rao B N. Flow of a second grade fluid over stretching sheet[J]. Int J Non-Linear Mech, 1996, 31(4): 547-550. doi: 10.1016/0020-7462(96)00009-1
    [9] Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids[M]. Vol 1. 2nd ed. New York: John Wiley and Sons Inc, 1987.
    [10] Sakiadis B. Boundary layer behavior on continuous solid surface: the boundary layer on a continuous flat surface[J]. AIChE J, 1961, 7(1): 221-227. doi: 10.1002/aic.690070211
    [11] Schlichting H. Boundary Layer Theory[M]. 6th ed. New York: McGraw-Hill, 1964.
    [12] Van Dyke M. Perturbation Methods in Fluid Mechanics[M]. New York: Academic Press, 1964.
    [13] Shawaqfah M S, Damseh Rebhi A, Chamkha A J, et al. Forced convection of Blasius flow of “second-grade” visco-elastic fluid[J]. Int J Heat and Technology, 2007, 25(1):145-151.
    [14] Damseh Rebhi A, Shatnawi Anis A, Chamkha A J, et al. Transient mixed convection flow of a second-grade visco-elastic fluid over vertical surfaces[J]. Nonlinear Analysis: Modeling and Control, 2008, 13(2): 169-179.
    [15] Coleman B D, Noll W. An approximation theorem for functionals with applications in continuum mechanics[J]. Arch Rat Mech Anal, 1960, 6(1): 355-370. doi: 10.1007/BF00276168
    [16] Fosdick R L, Rajagopal K R. Anomalous features in the model of second order fluids[J]. Arch Rational Mech Anal, 1979, 70(2): 145-152.
    [17] Cortell Rafael. Similarity solutions for flow and heat transfer of a viscoelsatic fluid over a stretching sheet[J]. Int J Non-Linear Mech, 1994, 29(2): 155-161. doi: 10.1016/0020-7462(94)90034-5
    [18] Rollins D, Vajravelu K. Heat transfer in a second grade fluid over a continuous stretching surface[J]. Acta Mech, 1991, 89: 167-178. doi: 10.1007/BF01171253
    [19] Khan S K, Sanjayanad E. Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet[J]. Int J Heat Mass Transfer, 2005, 48(8): 1534-1542. doi: 10.1016/j.ijheatmasstransfer.2004.10.032
    [20] Sadeghy K, Sharfi M. Local similarity for the flow of a “second-grade” viscoelastic fluid above a moving plate[J]. Int J Non-Linear Mech, 2004, 39(8): 1265-1273. doi: 10.1016/j.ijnonlinmec.2003.08.005
    [21] Anderson A D. Computational Fluid Dynamics[M]. Chap 6. New York: McGraw-Hill, 1995.
    [22] Duwairi H M, Chamkha A J. Transient free convection flow of a micropolar fluid over a vertical surface[J]. Int J Fluid Mechanics Research, 2005, 32(3): 255-268. doi: 10.1615/InterJFluidMechRes.v32.i3.10
    [23] Duwairi H M, Damseh Rebhi A, Tashtoush Bourhan. Transient non-Boussinesq MHD-free convection flows over a vertical surface[J]. Int J Fluid Mechanics Research, 2006, 33(2): 152-173.
    [24] Oosthuizen P H, Naylor D. An Introduction to Convective Heat Transfer[M]. New York: McGraw-Hill, 1999.
  • 加载中
计量
  • 文章访问数:  1247
  • HTML全文浏览量:  34
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-01-21
  • 刊出日期:  2010-05-15

目录

    /

    返回文章
    返回