留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摆动水翼的推力与流场结构数值研究

何国毅 张曙光 张星

何国毅, 张曙光, 张星. 摆动水翼的推力与流场结构数值研究[J]. 应用数学和力学, 2010, 31(5): 553-560. doi: 10.3879/j.issn.1000-0887.2010.05.006
引用本文: 何国毅, 张曙光, 张星. 摆动水翼的推力与流场结构数值研究[J]. 应用数学和力学, 2010, 31(5): 553-560. doi: 10.3879/j.issn.1000-0887.2010.05.006
HE Guo-yi, ZHANG Shu-guang, ZHANG Xing. Thrust Generation and Wake Structure of a Wiggling Hydrofoil[J]. Applied Mathematics and Mechanics, 2010, 31(5): 553-560. doi: 10.3879/j.issn.1000-0887.2010.05.006
Citation: HE Guo-yi, ZHANG Shu-guang, ZHANG Xing. Thrust Generation and Wake Structure of a Wiggling Hydrofoil[J]. Applied Mathematics and Mechanics, 2010, 31(5): 553-560. doi: 10.3879/j.issn.1000-0887.2010.05.006

摆动水翼的推力与流场结构数值研究

doi: 10.3879/j.issn.1000-0887.2010.05.006
详细信息
    作者简介:

    何国毅(1968- ),男,湖北沙市人,工程师,博士(Tel:+86-791-3953393;E-mail:heguoyi680812@yahoo.com.cn);张星,男,副研究员(联系人.Te:l+86-10-82543929;E-mail:zhangx@lnm.imech.ac.cn).

  • 中图分类号: O351

Thrust Generation and Wake Structure of a Wiggling Hydrofoil

  • 摘要: 在一定的Reynolds数范围内,水生动物和微型仿生机械通常采用摆动的方式获得推力,这种摆动可以用行进波来表示,行进波的波长则描述了摆动生物的柔性.该文用浸入边界方法模拟了低Reynolds数情况下,水翼NACA-65-010在水中摆动时的流场.结果表明,水翼摆动产生推力的大小与行进波波长密切相关,随着波长的增大,推力系数减小,推进效率则在一定的波长值达到最大;推力的产生与两种流场结构有关:即反Krmn涡街和涡对,摆动水翼后缘尾迹中形成反Krmn涡街时产生的推力要大于尾迹中形成涡对产生时的推力.
  • [1] Lighthill M J. Note on the swimming of slender fish[J]. Journal Fluid Mechanics, 1960, 9(2):305-317. doi: 10.1017/S0022112060001110
    [2] Lighthill M J. Hydromechanics of aquatic animal propulsive[J]. Annual Review Fluid Mechanics, 1969, 1(1):413-466. doi: 10.1146/annurev.fl.01.010169.002213
    [3] Freyumth P. Propulsive vortical signature of plunging and pitching airfoils[J]. AIAA Journal, 1988, 26(7):881-883. doi: 10.2514/3.9982
    [4] Jones K D, Dohring C M, Platzer M F. Experimental and computational investigation of the Knoller-Betz effect[J]. AIAA Journal, 1998, 36(7):1240-1246. doi: 10.2514/2.505
    [5] Jones K D, Castro B M, Mahmoud O, et al. A collaborative numerical and experimental investigation of flapping-wing propulsion[C]AIAA Paper 0706.40th Aerospace Sciences Meeting & Exhibit, Reno, NV, 2002.
    [6] Lighthill M J. Large-amplitude elongate-body theory of fish locomotion[J].Proceedings of the Royal Society of B, London: Biological Science, 1971, 179: 125-138. doi: 10.1098/rspb.1971.0085
    [7] Wu T Y. Hydrodynamics of swimming propulsion[J]. Journal Fluid Mechanics,1971, 46(2):521-544. doi: 10.1017/S0022112071000685
    [8] Newman J N. The force on a slender fish-like body[J]. Journal Fluid Mechanics, 1973, 58(4):689-702. doi: 10.1017/S0022112073002429
    [9] Cheng J Y, Zhuang L X, Tong B G. Analysis of swimming 3-D waving plate[J]. Journal Fluid Mechanics, 1991, 232(11):341-355. doi: 10.1017/S0022112091003713
    [10] Trianafyllou G S, Trianafyllou M S, Grosenbaugh M A. Optimal thrust development in oscillating foils with application to fish propulsive[J]. Journal Fluids Structure, 1993, 7(2):205-224. doi: 10.1006/jfls.1993.1012
    [11] Trianafyllou M S, Trianafyllou G S. An efficient swimming machine[J]. Science American, 1995, 272(3):1-6.
    [12] Yang Y H, Yin X Z, Lu X Y. Flow visualization over a 2-D traveling wave wall[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2):84-90.
    [13] Dong G J, Lu X Y. Numerical analysis on the propulsive performance and vortex shedding of fish-like traveling wavy plat[J]. International Journal for Numerical Methods in Fluids, 2005, 48(12):351-373.
    [14] 童秉刚,孙茂,尹协振. 飞行和游动生物流体力学的国内研究进展概述[J]. 自然杂志, 2003, 27(4):191-198.
    [15] 王亮,王明, 吴锤结. 自由推进俯仰震荡翼型的数值模拟研究[J]. 固体力学学报, 2006, 27(SI):110-114.
    [16] Li L, Yin Z X. Experiments on propulsive characteristics of the caudal-fin models of carangiform fish in cruise[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):1-5.
    [17] Uchiyama T, Kikuyama K. Numerical simulation for the propulsive performance of a submerged wiggling micromachine[J]. Journal of Micromechanics and Microengineering, 2004, 14(11):1537-1543. doi: 10.1088/0960-1317/14/11/015
    [18] Mittal R, Iaccarino G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
    [19] Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. Journal Computational Physics, 2001, 171(1):132-150. doi: 10.1006/jcph.2001.6778
    [20] Su S W, Lai M C, Lin C A. An immersed boundary technique for simulating complex flows with rigid boundary[J]. Computers and Fluids, 2007, 36(2):313-324.
    [21] Uhlmann M. An immersed boundary method with direct forcing for the simulation of particular flows[J]. Journal of Computational Physics, 2005, 209 (2):448-476. doi: 10.1016/j.jcp.2005.03.017
    [22] Akimoto H, Miyata H. Finite-volume simulation of a flow about a moving body with deformation[C]Proc 5th Int Symp Comp Fluid Dynamics, 1. Sendai, Japan, 1993: 13-18.
    [23] Lai M C, Peskin C S. An immersed boundary method with formal second order accuracy and reduced numerical viscosity[J]. Journal of Computational Physics, 2000, 160(2):705-719. doi: 10.1006/jcph.2000.6483
    [24] Pan H, Damodaran M. Parallel computation of viscous incompressible flows using Godunov-projection method on overlapping grids[J]. International Journal for Numerical Methods in Fluids, 2002, 39(5):441-463. doi: 10.1002/fld.339
    [25] Henderson R D. Details of the drag curve near the onset of vortex shedding[J]. Physics of Fluids, 1995, 7(9):2102-2104. doi: 10.1063/1.868459
  • 加载中
计量
  • 文章访问数:  873
  • HTML全文浏览量:  15
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-04-06
  • 刊出日期:  2010-05-15

目录

    /

    返回文章
    返回