留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人体动脉瘤生成与破裂的力学分析

任九生 袁学刚

任九生, 袁学刚. 人体动脉瘤生成与破裂的力学分析[J]. 应用数学和力学, 2010, 31(5): 561-572. doi: 10.3879/j.issn.1000-0887.2010.05.007
引用本文: 任九生, 袁学刚. 人体动脉瘤生成与破裂的力学分析[J]. 应用数学和力学, 2010, 31(5): 561-572. doi: 10.3879/j.issn.1000-0887.2010.05.007
REN Jiu-sheng, YUAN Xue-gang. Mechanics of the Formation and Rupture of Human Aneurysms[J]. Applied Mathematics and Mechanics, 2010, 31(5): 561-572. doi: 10.3879/j.issn.1000-0887.2010.05.007
Citation: REN Jiu-sheng, YUAN Xue-gang. Mechanics of the Formation and Rupture of Human Aneurysms[J]. Applied Mathematics and Mechanics, 2010, 31(5): 561-572. doi: 10.3879/j.issn.1000-0887.2010.05.007

人体动脉瘤生成与破裂的力学分析

doi: 10.3879/j.issn.1000-0887.2010.05.007
基金项目: 国家自然科学基金资助项目(10772104;10872045);上海市教委科研创新资助项目(09YZ12);上海市重点学科建设资助项目(S30106)
详细信息
    作者简介:

    任九生(1970- ),男,河南人,副教授,博士(联系人.Tel:86-21-66136910;E-mail:jsren@shu.edu.cn).

  • 中图分类号: O343

Mechanics of the Formation and Rupture of Human Aneurysms

  • 摘要: 在大变形超弹性理论框架下研究了内压、轴向拉伸和扭转联合作用下人体动脉壁的力学响应,应用结构不稳定性理论对动脉瘤生成的可能性进行了解释,应用材料强度理论对动脉瘤破裂的可能性进行了分析.考虑动脉壁中残余应力和平滑肌主动作用的影响,用纤维加强各向异性不可压超弹性复合材料两层厚壁圆筒模型来模拟动脉壁的力学特性.给出了正常和几种非正常状态下动脉壁的变形曲线和应力分布.变形和稳定性分析结果表明该文模型可以模拟正常状态下动脉壁的均匀变形,还可以模拟在动脉壁中弹性蛋白纤维和胶原蛋白纤维强度降低的非正常状态下动脉瘤生成的可能性及动脉瘤的增长.应力和强度分析结果表明该文模型可以模拟当动脉瘤中的最大应力超过管壁的强度时动脉瘤破裂的可能性.
  • [1] Humphrey J D. Cardiovascular Solid Mechanics, Cells, Tissures and Organs[M]. New York: Springer-Verlag, 2002.
    [2] Vorp D A. Biomechanics of abdominal aortic aneurysm[J]. J Biomech, 2007, 40(9): 1887-1902. doi: 10.1016/j.jbiomech.2006.09.003
    [3] Volokh K Y, Vorp D A. A model of growth and rupture of abdominal aortic aneurysm[J]. J Biomech, 2008, 41(5): 1015-1021. doi: 10.1016/j.jbiomech.2007.12.014
    [4] Humphrey J D. Continuum biomechanics of soft biological tissues[J]. Proc R Soc A, 2003, 459(1): 1-44. doi: 10.1098/rspa.2002.1109
    [5] Watton P N, Hill N A, Heil M. A mathematical model for the growth of abdominal aortic aneurysm[J]. Biomechan Model Mechanobiol, 2004, 3(1): 98-113. doi: 10.1007/s10237-004-0052-9
    [6] Humphrey J D. Intracranial saccular aneurysms[C]Biomechanics of Soft Tissue in Cardiovascular Systems. New York: Springer Wien, 2003.
    [7] David G, Humphrey J D. Further evidence for the dynamic stability of intracranial saccular aneurysms[J]. J Biomech, 2003, 36(7): 1043-1150. doi: 10.1016/S0021-9290(03)00034-4
    [8] Humphrey J D, Canham P B. Structure, mechanical properties and mechanics of intracranial saccular aneurysms[J]. J Elasticity, 2000, 61(1): 49-81. doi: 10.1023/A:1010989418250
    [9] Kroon M, Holzapfel G A. Estimation of the distributions of anisotropic, elastic properties and wall stresses of saccular cerebral aneurysms by inverse analysis[J]. Proceedings of the Royal Society A, 2008, 464(6): 807-825. doi: 10.1098/rspa.2007.0332
    [10] Holzapfel G A, Gasser T C, Stadler M. Structural model for the viscoelastic behavior of arterial walls, continuum formulations and finite element analysis[J]. Eur J Mech A/Solids, 2002, 21(3): 441-463. doi: 10.1016/S0997-7538(01)01206-2
    [11] Taber L A. Nonlinear Theory of Elasticity: Applications in Biomechanics[M]. NJ: World Scientific, River Edge, 2004.
    [12] Holzapfel G A, Gasser T C, Ogden R W. A new constitutive framework for arterial wall mechanics and a comparative study of material models[J]. J Elasticity, 2000, 61(1): 1-48. doi: 10.1023/A:1010835316564
    [13] Holzapfel G A, Sommer G, Regitnig P. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques[J]. J Biomech Eng, 2004, 126(5): 657-665. doi: 10.1115/1.1800557
    [14] Driessen N J B, Wilson W, Bouten C V C, et al. A computational model for collagen fiber remodeling in the arterial wall[J]. J Theoretical Biology, 2004, 226(1): 53-64. doi: 10.1016/j.jtbi.2003.08.004
    [15] Gasser T C, Ogden R W, Holzapfel G A. Hyperelastic modeling of arterial layers with distributed collagen fiber orientations[J]. J R Soc Interface, 2006, 3(1): 15-35. doi: 10.1098/rsif.2005.0073
    [16] Vito R P, Dixon S A. Blood vessel constitutive models-1995-2002[J]. Annu Rev Biomed Eng, 2003, 5(4): 413-439. doi: 10.1146/annurev.bioeng.5.011303.120719
    [17] Fung Y C. Biomechanics: Motion, Flow, Stress and Growth[M]. New York :Springer-Verlag, 1990.
    [18] Baek S, Gleason R L, Rajagopal K R, et al. Theory of small on large; potential utility in computations of fluid-solid interactions in arteries[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(15) 3070-3078.
    [19] Masson I, Boutouyrie P, Laurent S, et al. Characterization of arterial wall mechanical behavior and stresses from human clinical data[J]. J Biomech, 2008, 41(12): 2618-2627. doi: 10.1016/j.jbiomech.2008.06.022
    [20] Vena P, Gastadi D, Socci L, et al. An anisotropic model for tissue growth and remodeling during early development of cerebral aneurysms[J]. Computational Materials Science, 2008, 43(3): 565-577. doi: 10.1016/j.commatsci.2007.12.023
    [21] Baek S, Rajagopal K R, Humphrey J D. A theoretical model of enlarging intracranial fusiform aneurysm[J]. J Biomechanical Engineering, 2006, 128(1): 142-149. doi: 10.1115/1.2132374
    [22] Haughton D M. Ogden R W. On the incremental equations in non-linear elasticity—Ⅱ: Bifurcation of pressurized spherical shells[J]. J Mech Phys Solids, 1978, 26(1): 111-138. doi: 10.1016/0022-5096(78)90017-0
    [23] Kroon M, Holzapfel G A. A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms[J]. J Theoretical Biology, 2009, 257(1): 73-83. doi: 10.1016/j.jtbi.2008.10.021
    [24] Holzapfel G A, Gasser T C. Computational stress-deformation analysis of arterial wall including high-pressure response[J]. Int J Cardiology, 2007, 116(1): 78-85. doi: 10.1016/j.ijcard.2006.03.033
  • 加载中
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  44
  • PDF下载量:  931
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-04-08
  • 刊出日期:  2010-05-15

目录

    /

    返回文章
    返回