留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性固体和微极多孔晶体界面及其结合松散度对弹性波传播的影响

R·库玛 M·潘确

R·库玛, M·潘确. 弹性固体和微极多孔晶体界面及其结合松散度对弹性波传播的影响[J]. 应用数学和力学, 2010, 31(5): 573-584. doi: 10.3879/j.issn.1000-0887.2010.05.008
引用本文: R·库玛, M·潘确. 弹性固体和微极多孔晶体界面及其结合松散度对弹性波传播的影响[J]. 应用数学和力学, 2010, 31(5): 573-584. doi: 10.3879/j.issn.1000-0887.2010.05.008
Rajneesh Kumar, Meenakshi Panchal. Effect of Loose Bonding on Reflection and Transmission of Elastic Waves at Interface Between Elastic Solid and Micropolar Porous Cubic Crystal[J]. Applied Mathematics and Mechanics, 2010, 31(5): 573-584. doi: 10.3879/j.issn.1000-0887.2010.05.008
Citation: Rajneesh Kumar, Meenakshi Panchal. Effect of Loose Bonding on Reflection and Transmission of Elastic Waves at Interface Between Elastic Solid and Micropolar Porous Cubic Crystal[J]. Applied Mathematics and Mechanics, 2010, 31(5): 573-584. doi: 10.3879/j.issn.1000-0887.2010.05.008

弹性固体和微极多孔晶体界面及其结合松散度对弹性波传播的影响

doi: 10.3879/j.issn.1000-0887.2010.05.008
基金项目: 印度科学和工业研究会(CSIR)资助项目
详细信息
  • 中图分类号: O345;O347.4+1

Effect of Loose Bonding on Reflection and Transmission of Elastic Waves at Interface Between Elastic Solid and Micropolar Porous Cubic Crystal

  • 摘要: 在松散结合的弹性固体和微极多孔立方晶体半空间之间的界面上,研究周期平面波的反射和透射,假定界面性质类似于断层,断层上的牵引力保持连续,但允许产生有限的滑移.用图形给出各种反射波和透射波的振幅比.文中还演绎出某些重要的特殊情况.
  • [1] Nunziato J W, Cowin S C. A non-linear theory of elastic materials with voids[J]. Archive Rational Mechanics and Analysis, 1979, 72(2): 175-201.
    [2] Cowin S C, Nunziato J W. Linear elastic materials with voids[J]. Journal of Elasticity, 1983, 13(2): 125-147. doi: 10.1007/BF00041230
    [3] Suhubi E S, Eringen A C. Non-linear theory of simple microelastic solids Ⅱ[J]. International Journal of Engineering Science, 1964, 2: 389-404. doi: 10.1016/0020-7225(64)90017-5
    [4] Eringen A C. Microcontinuum Field Theories Ⅰ: Foundations and Solids[M]. New York: Springer-Verlag, 1999.
    [5] Mindlin R D. Microstructure in linear elasticity[J]. Archive Rational Mechanics and Analysis, 1964, 16(1): 51-78.
    [6] Eringen A C. Linear theory of micropolar elasticity[J]. Journal of Mathematics and Mechanics, 1966, 15(6): 909-923.
    [7] Scarpetta E. On the fundamental solutions in micropolar elasticity with voids[J]. Acta Mechanica, 1990, 82(3/4): 151-158. doi: 10.1007/BF01173624
    [8] Passarella F. Some results in micropolar thermoelasticity[J]. Mechanics Research Communications, 1996, 23(4): 349-357. doi: 10.1016/0093-6413(96)00032-8
    [9] Marin M. Some basic theorems in elastostatics of micropolar materials with voids[J]. Journal of Computational and Applied Mathematics, 1996, 70(1): 115-126. doi: 10.1016/0377-0427(95)00137-9
    [10] Minagawa S, Arakawa K, Yamada M. Dispersion curves for waves with reference to estimations of the material constant for diamond[J]. Bulletin of JSME, 1981, 24(187): 22-28. doi: 10.1299/jsme1958.24.22
    [11] Atanackovic T M, Guran A. Theory of Elasticity for Scientists and Engineers[M]. Birkhauser, 2000.
    [12] Murti G S. Reflection, transmission and attenuation of elastic waves at a loosely-bonded interface of two half spaces[J]. Geophys J R Astr Soc, 1976, 44(2): 389-404. doi: 10.1111/j.1365-246X.1976.tb03663.x
    [13] Eringen A C. Plane Waves in nonlocal micropolar elasticity[J]. International Journal of Engineering Science, 1984, 22(8/10): 1113-1121. doi: 10.1016/0020-7225(84)90112-5
  • 加载中
计量
  • 文章访问数:  1127
  • HTML全文浏览量:  37
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-01-14
  • 刊出日期:  2010-05-15

目录

    /

    返回文章
    返回