留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准静力学双面接触支承问题及其粘弹性材料的非局部摩擦

A·拓亚林

A·拓亚林. 准静力学双面接触支承问题及其粘弹性材料的非局部摩擦[J]. 应用数学和力学, 2010, 31(5): 591-601. doi: 10.3879/j.issn.1000-0887.2010.05.010
引用本文: A·拓亚林. 准静力学双面接触支承问题及其粘弹性材料的非局部摩擦[J]. 应用数学和力学, 2010, 31(5): 591-601. doi: 10.3879/j.issn.1000-0887.2010.05.010
Arezki Touzaline. Quasistatic Bilateral Contact Problem With Adhesion and Nonlocal Friction for Viscoelastic Materials[J]. Applied Mathematics and Mechanics, 2010, 31(5): 591-601. doi: 10.3879/j.issn.1000-0887.2010.05.010
Citation: Arezki Touzaline. Quasistatic Bilateral Contact Problem With Adhesion and Nonlocal Friction for Viscoelastic Materials[J]. Applied Mathematics and Mechanics, 2010, 31(5): 591-601. doi: 10.3879/j.issn.1000-0887.2010.05.010

准静力学双面接触支承问题及其粘弹性材料的非局部摩擦

doi: 10.3879/j.issn.1000-0887.2010.05.010
详细信息
  • 中图分类号: O151.25;O343.3

Quasistatic Bilateral Contact Problem With Adhesion and Nonlocal Friction for Viscoelastic Materials

  • 摘要: 建立了描述变形体和基础间接触问题的数学模型.接触是双面的,并采用非局部摩擦定理建模,支承列入计算.粘结场(bonding field)的变化用一个一阶的常微分方程来表示,材料特性用一个非线性粘弹性本构关系建模.导出了该力学问题的变分公式,当摩擦因数充分小时,证明了其弱解的存在性和唯一性.依赖于时间的变分不等式、微分方程和Banach不动点理论,是该证明依据的基础.
  • [1] Duvaut G, Lions J-L. Les Inéquations en Mécanique et en Physique[M]. Paris: Dunod, 1972.
    [2] Sofonea M, Han W, Shillor M. Analysis and Approximations of Contact Problems With Adhesion or Damage[M]. Pure and Applied Mathematics.L76.Boca Raton, Florida: Chapman & Hall / CRC Press, 2006.
    [3] Awbi B, Chau O, Sofonea M. Variational analysis of a frictional contact problem for viscoelastic bodies [J]. Int Math J, 2002, 1(4): 333-348.
    [4] Chau O, Fernandez J R, Shillor M, et al. Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion[J]. Journal of Computational and Applied Mathematics, 2003, 159(2): 431-465. doi: 10.1016/S0377-0427(03)00547-8
    [5] Chau O, Shillor M, Sofonea M. Dynamic frictionless contact with adhesion[J]. J Appl Math Phys(ZAMP), 2004, 55(1): 32-47. doi: 10.1007/s00033-003-1089-9
    [6] Fernandez J R, Shillor M, Sofonea M. Analysis and numerical simulations of a dynamic contact problem with adhesion[J]. Math Comput Modelling, 2003, 37(12): 1317-1333. doi: 10.1016/S0895-7177(03)90043-4
    [7] Sofonea M, Hoarau-Mantel T V. Elastic frictionless contact problems with adhesion[J]. Adv Math Sci Appl, 2005, 15(1): 49-68.
    [8] Cangémi L. Frottement et adhérence: modèle, traitement numérique et application  l’interface fibre/matrice[D]. PhD Thesis. Aix Marseille I: Univ Méditerranée, 1997.
    [9] Frémond M. Adhérence des solides[J]. J Mécanique Théorique et Appliquée, 1987, 6: 383-407.
    [10] Frémond M. Equilibre des structures qui adhèrent  leur support[J]. C R Acad Sci, Série Ⅱ, 1982, 295: 913-916.
    [11] Raous M, Cangémi L, Cocu M. A consistent model coupling adhesion, friction, and unilateral contact[J]. Comput Meth Appl Mech Engng, 1999, 177(3/4): 383-399. doi: 10.1016/S0045-7825(98)00389-2
    [12] Rojek J, Telega J J. Contact problems with friction, adhesion and wear in orthopeadic biomechanics—Ⅰ: general developements[J]. J Theor Appl Mech, 2001, 39: 655-677.
    [13] Shillor M, Sofonea M, Telega J J. Models and Variational Analysis of Quasistatic Contact[M]. Lecture Notes Physics. Vol 655.Berlin: Springer, 2004.
    [14] Sofonea M, Arhab R, Tarraf R. Analysis of electroelastic frictionless contact problems with adhesion[J]. Journal of Applied Mathematics, 2006: 1-25. ID 64217.
    [15] Nassar S A, Andrews T, Kruk S, et al. Modelling and simulations of a bonded rod[J]. Math Comput Modelling, 2005, 42(5/6): 553-572. doi: 10.1016/j.mcm.2004.07.018
    [16] Brezis H. Equations et inéquations non linéaires dans les espaces vectoriels en dualité[J]. Annales Inst Fourier, 1968, 18(1): 115-175. doi: 10.5802/aif.280
    [17] Cocou M, Rocca R. Existence results for unilateral quasistatic contact problems with friction and adhesion[J]. Math Model Num Anal, 2000, 34(5): 981-1001. doi: 10.1051/m2an:2000112
    [18] Frémond. Non Smooth Thermomechanics[M]. Berlin: Springer, 2002.
  • 加载中
计量
  • 文章访问数:  1210
  • HTML全文浏览量:  40
  • PDF下载量:  783
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2009-11-23
  • 刊出日期:  2010-05-15

目录

    /

    返回文章
    返回