## 留言板

 引用本文: 谢春梅, 冯民富. 拟Newton流的一种新的稳定化方法[J]. 应用数学和力学, 2010, 31(9): 1036-1049.
XIE Chun-mei, FENG Min-fu. A New Stabilized Method for Quasi-Newtonian Flow[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1036-1049. doi: 10.3879/j.issn.1000-0887.2010.09.004
 Citation: XIE Chun-mei, FENG Min-fu. A New Stabilized Method for Quasi-Newtonian Flow[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1036-1049.

## 拟Newton流的一种新的稳定化方法

##### doi: 10.3879/j.issn.1000-0887.2010.09.004

###### 作者简介:谢春梅(1983- ),女,四川人,博士生;冯民富,教授(联系人.E-mail:fmf@wtjs.cn).
• 中图分类号: O241.82

## A New Stabilized Method for Quasi-Newtonian Flow

• 摘要: 对一般的拟Newton流问题,针对(双)线性/(双)线性和(双)线性/常数两种低阶有限元空间,提出了一种新的稳定化方法．该方法可以看成压力投影稳定化方法从Stokes问题到拟Newton流问题的推广与发展．在速度属于W1,r(Ω),压力属于Lr′(Ω)(1/r+1/r′=1)下,给出了误差估计．服从幂律及Carreau分布的拟Newton流问题可看成该文的特殊情况．进一步地,还给出了基于残差的后验误差估计．最后给出的数值算例验证了理论结果．
•  [1] Barrett J W, Liu W B. Finite element error anaysis of a quasi-Newtonian flow obeying the Carreau or power law[J]. Numer Math, 1993,64(1): 433-453. [2] Barrett J W, Liu W B. Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow[J]. Numer Math, 1994, 68(4): 437-456. [3] Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem[J]. Numer Math,1988, 53(1/2): 225-235. [4] Hansbo P, Szepessy A. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations[J]. Comp Meth Appl Mech Engrg, 1990, 84(2): 175-192. [5] Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J]. Math Comp, 1993, 60(202): 531-543. [6] Zhou L, Zhou T X. Finite element method for a three-fields model for quasi-Newtonian flow[J]. Mathematica Numerica Sinica, 1997, 3: 305-312. [7] Hughes T J R, Mazzei L, Oberai A A, Wray A A. The Multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence[J]. Phys Fluids, 2001,13(2): 505-512. [8] Li J, He Y N. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J]. J Comp Appl Math, 2008, 214(1): 58-65. [9] Bochev P B, Dohrmann C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal, 2007,44(1): 82-101. [10] Li J, He Y N, Chen Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Compu Meth Appl Mech Engrg, 2007,197(1/4): 22-35. [11] He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Appl Numer Math, 2008, 58(10): 1503-1514. [12] Horgan C O. Korn’s inequalities and their applications in continuum mechanics[J]. SIAM Review, 1995, 37(4): 491-511. doi: 10.1137/1037123 [13] Mosolov P P, Myasnikov V P. A proof of Korn’s inequality[J]. Soviet Math Dokl, 1971,12: 1618-1622. [14] Baranger J, Najib K. Analyse numérique des écoulements quasi-Newtoniens dont la viscosité-obéit  la loi puissance ou la loi de Carreau[J]. Numer Math, 1990,58(1): 35-49. [15] Berrone S, Süli E. Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows[J]. IMA J Numer Anal, 2008,28(2): 382-421. [16] Dohrmann C R, Bochev P B. A stabilized finite element method for the Stokes problem based on polynomial pressure projections[J]. J Numer Meth in Fluids, 2004,46(2): 183-201. doi: 10.1002/fld.752 [17] Baranger J, Najib K, Sandri D. Numerical analysis of a three-fields model for a quasi-Newtonian flow[J]. Compu Meth Appl Mech Engrg, 1993,109(3/4): 281-292. [18] Mu J, Feng M F. Numerical analysis of an FEM for a transient viscoelastic flow[J]. Numerical Mathematics: A Journal of Chinese Universities,English Series, 2004, 13(2): 150-165. [19] Zhou L, Zhou T X. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows nonlinear model[J]. J Comp Appl Math, 1997,81(1): 19-28. [20] Ge Z H, Feng M F, He Y N. A stabilized nonconfirming finite element method based on multiscale enrichment for the stationary Navier-Stokes equations[J]. Appl Math Comp, 2008, 202(2): 700-707.

##### 计量
• 文章访问数:  1336
• HTML全文浏览量:  59
• PDF下载量:  832
• 被引次数: 0
##### 出版历程
• 收稿日期:  1900-01-01
• 修回日期:  2010-07-02
• 刊出日期:  2010-09-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈