## 留言板

Rajneesh库玛, Rajeev库玛. 各向同性弹性半空间与带孔隙横观各向同性热弹性材料界面上波的传播[J]. 应用数学和力学, 2010, 31(9): 1101-1117. doi: 10.3879/j.issn.1000-0887.2010.09.010
 引用本文: Rajneesh库玛, Rajeev库玛. 各向同性弹性半空间与带孔隙横观各向同性热弹性材料界面上波的传播[J]. 应用数学和力学, 2010, 31(9): 1101-1117.
Rajneesh Kumar, Rajeev Kumar. Propagation of Wave at the Boundary Surface of Transversely Isotropic Thermoelastic Material With Voids and Isotropic Elastic Half-Space[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1101-1117. doi: 10.3879/j.issn.1000-0887.2010.09.010
 Citation: Rajneesh Kumar, Rajeev Kumar. Propagation of Wave at the Boundary Surface of Transversely Isotropic Thermoelastic Material With Voids and Isotropic Elastic Half-Space[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1101-1117.

## 各向同性弹性半空间与带孔隙横观各向同性热弹性材料界面上波的传播

##### doi: 10.3879/j.issn.1000-0887.2010.09.010

• 中图分类号: O347.4+2

## Propagation of Wave at the Boundary Surface of Transversely Isotropic Thermoelastic Material With Voids and Isotropic Elastic Half-Space

• 摘要: 在一各向同性弹性半空间上覆盖一层带孔隙的横观各向同性热弹性材料时，研究孔隙对表面波传播的影响．建立“焊接”接触及光滑接触界面条件下的数学模型，导出其频率方程．用图形给出相速度和衰减系数随波数的变化曲线，描述了“焊接”接触界面条件时孔隙和各向异性的影响．得到了“焊接”接触时的单位损耗，以及体积率场、正应力、温度变化的幅值，并对一组特殊模型用图形描述了孔隙和各向异性的影响．研究中还推演出一些特例．
•  [1] Biot M A. Theory of propagation of elastic waves in a fluid saturated porous solid: I low frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178. [2] Biot M A, Willis D G. Elastic coefficients of the theory of consolidation[J].The Journal of the Acoustical Society of America, 1957, 24: 594-601. [3] Goodman M A, Cowin S C. A continuum theory of granular material[J]. Archive for Rational Mechanics and Analysis, 1972, 44(4): 249-266. [4] Nunziato J W, Cowin S C. A non-linear theory of elastic materials with voids[J]. Archive for Rational Mechanics and Analysis, 1979, 72(2): 175-201. [5] Cowin S C, Nunziato J W. Linear elastic materials with voids[J]. Journal of Elasticity, 1983, 13(2): 125-147. [6] Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of Mechanics and Physics of Solids, 1967, 15(5): 299-309. [7] Green A E, Lindsay K A. Thermoelasticity[J]. Journal of Elasticity, 1972, 2: 1-7. [8] Dhaliwal R S, Sherief H. Generalized thermoelasticity for anisotropic media[J]. Quarterly of Applied Mathematics, 1980, 33: 1-8. [9] Iesan D. A theory of thermoelastic material with voids[J]. Acta Mechanica, 1986, 60(1/2): 67-89. [10] Iesan D. A theory of initially stressed thermoelastic material with voids[J]. An Stiint Univ Ai I Cuza Iasi Sect I a Mat, 1987, 33: 167-184. [11] Dhaliwal R S, Wang J. A heat-flux dependent theory of thermoelasticity with voids[J]. Acta Mech, 1995, 110(1/4): 33-39. [12] Chirita S, Scalia A. On the spatial and temporal behaviour in linear thermoelasticity of materials with voids[J]. J Thermal Stresses, 2001, 24(5): 433-455. [13] Pompei A, Scalia A. On the asymptotic spatial behaviour in linear thermoelasticity of materials with voids[J]. J Thermal Stresses, 2002, 25(2): 183-193. [14] Scalia A, Pompei A, Chirita S. On the behaviour of steady time harmonic oscillations thermoelastic materials with voids[J]. J Thermal Stresses, 2004, 27(3):209-226. [15] Singh J, Tomer S K. Plane waves in thermoelastic materials with voids[J]. Mech Mat, 2007, 39(10): 932-940. [16] Singh B. Wave propagation in a generalized thermoelastic materials with voids[J]. Appl Math Comput, 2007, 189(1): 698-709. [17] Ciarletta M, Straughan B. Thermo-poroelastic acceleration waves in elastic materials with voids[J]. J Math Anal Appl, 2007, 333: 142-150. [18] Ciarletta M, Scalia A. On uniqueness and reciprocity in linear thermoelasticity of material with voids[J]. Journal of Elasticity, 1993, 32(1):1-17. [19] Magana A, Quintanilla R. On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity[J]. Asymptotic Analysis, 2006, 49(3/4): 173-187. [20] Sturnin D V. On characteristics times in generalized thermoelasticity[J]. J Appl Math, 2001, 68(5): 816-817. [21] Kolsky H. Stress Waves in Solids[M]. Oxford: Clarendon Press, 1935. [22] Kumar R, Kumar R. Propagation of waves in a layer of transversely isotropic elastic material with voids and rotation overlaying an isotropic elastic half-space[J]. Special Topics and Reviews in Porous Media-An International Journal, 2010, 1(2):145-164. [23] Dhaliwal R S, Singh A. Dynamic Coupled Thermoelasticity[M]. Delhi: Hindustan Publishing Corporation, 1980. [24] Bullen K E. An Introduction to the Theory of Seismology[M]. Cambridge: Cambridge University Press, 1963.

##### 计量
• 文章访问数:  1458
• HTML全文浏览量:  69
• PDF下载量:  665
• 被引次数: 0
##### 出版历程
• 收稿日期:  1900-01-01
• 修回日期:  2010-06-25
• 刊出日期:  2010-09-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈