留言板

C·S·拉奥, M·K·亚达夫. 非齐次Burgers方程解的渐近性行为[J]. 应用数学和力学, 2010, 31(9): 1133-1139. doi: 10.3879/j.issn.1000-0887.2010.09.012
 引用本文: C·S·拉奥, M·K·亚达夫. 非齐次Burgers方程解的渐近性行为[J]. 应用数学和力学, 2010, 31(9): 1133-1139.
Ch. Srinivasa Rao, Manoj K Yadav. Large Time Asymptotics for Solutions of a Nonhomogeneous Burgers Equation[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1133-1139. doi: 10.3879/j.issn.1000-0887.2010.09.012
 Citation: Ch. Srinivasa Rao, Manoj K Yadav. Large Time Asymptotics for Solutions of a Nonhomogeneous Burgers Equation[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1133-1139.

非齐次Burgers方程解的渐近性行为

doi: 10.3879/j.issn.1000-0887.2010.09.012

• 中图分类号: O175.24

Large Time Asymptotics for Solutions of a Nonhomogeneous Burgers Equation

• 摘要: 构造了非齐次Burgers方程的解，方程服从有界和紧致的初始曲线，作了一个有趣的探索．将热方程初值问题（L2(R,ex2/2)中有初值）的解，表示为该热方程自相似解的一个级数，Kloosterziel方法立即显示出该初值问题解的渐近性行为．受Kloosterziel方法的启发，根据热方程的自相似解，来表示非齐次Burgers方程的解．最后得到该非齐次Burgers方程解的渐近性特征．
•  [1] Ablowitz M J, De Lillo S. The Burgers equation under deterministic and stochastic forcing [J]. Physica D, 1996, 92(3/4):245-259. [2] Balogh A, Gilliam D S, Shubov V I. Stationary solutions for a boundary controlled Burgers’equation [J]. Math Comput Model, 2001, 33(1/3): 21-37. [3] Gao Y T, Xu X G, Tian B. Variable-coefficient forced Burgers system in nonlinear fluid mechanics and its possibly observable effects[J]. Int J Mod Phys C, 2003, 14(9): 1207-1222. [4] Gurarie V, Migdal A. Instantons in the Burgers equation[J]. Phys Rev E, 1996, 54(5)：4908-4914. [5] Xu T, Zhang C-Y, Li J, Meng X-H, Zhu H-W, Tian B. Symbolic computation on generalized Hopf-Cole transformation for a forced Burgers model with variable coefficients from fluid dynamics[J]. Wave Motion, 2007, 44(4): 262-270. [6] Kloosterziel R C. On the large-time asymptotics of the diffusion equation on infinite domains[J]. J Engrg Math, 1990, 24(3): 213-236. [7] Higgins J R. Completeness and Basic Properties of Sets of Special Functions[M]. Cambridge:Cambridge University Press, 1977. [8] Ding X-Q, Jiu Q-S, He C. On a nonhomogeneous Burgers’equation[J]. Sci China Ser A, 2001, 44(8): 984-993. [9] Rao C S, Yadav M K. Solutions of a nonhomogeneous Burgers equation[J]. Stud Appl Math, 2010, 124(4): 411-422. [10] Polyanin A D. Handbook of Linear Partial Differential Equations for Engineers and Scientists[M].New York：Chapman & Hall/CRC, 2002.

计量
• 文章访问数:  1040
• HTML全文浏览量:  41
• PDF下载量:  699
• 被引次数: 0
出版历程
• 收稿日期:  1900-01-01
• 修回日期:  2010-06-04
• 刊出日期:  2010-09-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈