留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gauss噪声扰动下的FitzHugh-Nagumo系统的随机稳定性

郑言 黄建华

郑言, 黄建华. Gauss噪声扰动下的FitzHugh-Nagumo系统的随机稳定性[J]. 应用数学和力学, 2011, 32(1): 11-21. doi: 10.3879/j.issn.1000-0887.2011.01.002
引用本文: 郑言, 黄建华. Gauss噪声扰动下的FitzHugh-Nagumo系统的随机稳定性[J]. 应用数学和力学, 2011, 32(1): 11-21. doi: 10.3879/j.issn.1000-0887.2011.01.002
ZHENG Yan, HUANG Jian-hua. Stochastic Stability of FitzHugh-Nagumo Systems Perturbed by Gaussian White Noise[J]. Applied Mathematics and Mechanics, 2011, 32(1): 11-21. doi: 10.3879/j.issn.1000-0887.2011.01.002
Citation: ZHENG Yan, HUANG Jian-hua. Stochastic Stability of FitzHugh-Nagumo Systems Perturbed by Gaussian White Noise[J]. Applied Mathematics and Mechanics, 2011, 32(1): 11-21. doi: 10.3879/j.issn.1000-0887.2011.01.002

Gauss噪声扰动下的FitzHugh-Nagumo系统的随机稳定性

doi: 10.3879/j.issn.1000-0887.2011.01.002
基金项目: 国家自然科学基金资助项目(10926096;10971225)
详细信息
    作者简介:

    郑言(1979- ),男,沈阳人,讲师,博士(联系人.E-mail:yanzhengyl@163.com).

  • 中图分类号: O19

Stochastic Stability of FitzHugh-Nagumo Systems Perturbed by Gaussian White Noise

  • 摘要: 在Gauss噪声扰动下FitzHugh-Nagumo系统的随机稳定性是该文的研究目的.通过研究随机FitzHugh-Nagumo系统的动力学行为, 证明其存在唯一的、具有指数混合速度的不变测度.最后, 考察当噪声趋于0时不变测度的渐近行为.
  • [1] Has’minskii R Z.Stochastic Stability of Differential Equations[M].Dordrecht: Kluwer Academic Publishers, 1981.
    [2] Kifer Y.Random Perturbations of Dynamical Systems[M]. Boston: Birkhuser, 1988.
    [3] Baladi V.Positive Transfer Operators and Decay of Correlations[M]. Advanced Series in Nonlinear Dynamics. Vol 16. New Jersey: World Scientific Publishing Co, Inc, 2000.
    [4] Blank M.Discreteness and Continuity in Problems of Chaotic Dynamics[M].Transl Math Monographs. Vol 116. Providence,RI, United States: American Mathematical Society, 1997.
    [5] Viana M.Stochastic Dynamics of Deterministic Systems[M].Brazil: Col Bras de Matemti ̄ca, 1997.
    [6] Babin A, Vishik M.Attractors of Evolution Equations[M]. Amsterdam: North-Holland, 1992.
    [7] Martine M. Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems[J].SIAM J Math Anal,1989, 20(4): 816-844. doi: 10.1137/0520057
    [8] Rodriguez-Bernal A, Wang B. Attractor for partly dissipative reaction diffusion systems in Rn[J].J Math Anal Appl, 2000, 252(2): 790-803. doi: 10.1006/jmaa.2000.7122
    [9] Robinson J.Infinite-Dimensional Dynamical Systems, an Introduction to Dissipative Parabolic PDEs and Theory of Global Attractors[M]. Cambridge: Cambridge University Press, 2001.
    [10] Teman R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 1988.
    [11] 杨美华, 钟承奎. 无界域上部分耗散系统解的全局存在性和唯一性[J].兰州大学学报(自然科学版), 2006, 42(5): 130-136.(YANG Mei-hua, ZHONG Cheng-kui. The existence and uniqueness of the solutions for partly dissipative reaction diffusion systems in Rn[J].J Lanzhou University(Natural Sciences), 2006, 42(5): 130-136.(in Chinese))
    [12] Magalha~es P, Coayla-Tern E.Weak solution for stochastic FitzHugh-Nagumo equations[J].Stochastic Analysis and Applications, 2003, 21(2): 443-463. doi: 10.1081/SAP-120019294
    [13] Huang J, Shen W. Global attractors for partly dissipative random/stochastic reaction diffusion systems[J].International Journal of Evolution Equations, 2009, 4(4): 383-412.
    [14] Da Prato G, Zabczyk J. Ergodicity for Infinite Dimensional Systems[M]. Cambridge:Cambridge University Press, 1996.
    [15] Da Prato G, Zabczyk J. Convergence to equilibrium for classical and quantum spin systems[J].Probability Theory and Ralat Fields, 1995, 103(4): 529-552. doi: 10.1007/BF01246338
    [16] Peszat S, Zabczyk J.Stochastic Partial Differential Equations With Lévy Noise[M]. Cambridge:Cambridge University Press, 2007.
    [17] Vleck E, Wang B. Attractors for lattice FitzHugh-Nagumo systems[J].Physica D, 2005, 212(3/4): 317-336. doi: 10.1016/j.physd.2005.10.006
  • 加载中
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  37
  • PDF下载量:  746
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-25
  • 修回日期:  2010-11-26
  • 刊出日期:  2011-01-15

目录

    /

    返回文章
    返回