留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡旋演化的小波自适应模拟

赵勇 宗智 邹文楠

赵勇, 宗智, 邹文楠. 涡旋演化的小波自适应模拟[J]. 应用数学和力学, 2011, 32(1): 33-43. doi: 10.3879/j.issn.1000-0887.2011.01.004
引用本文: 赵勇, 宗智, 邹文楠. 涡旋演化的小波自适应模拟[J]. 应用数学和力学, 2011, 32(1): 33-43. doi: 10.3879/j.issn.1000-0887.2011.01.004
ZHAO Yong, ZONG Zhi, ZOU Wen-nan. Numerical Simulation of Vortex Evolution Based on Adaptive Wavelet Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 33-43. doi: 10.3879/j.issn.1000-0887.2011.01.004
Citation: ZHAO Yong, ZONG Zhi, ZOU Wen-nan. Numerical Simulation of Vortex Evolution Based on Adaptive Wavelet Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 33-43. doi: 10.3879/j.issn.1000-0887.2011.01.004

涡旋演化的小波自适应模拟

doi: 10.3879/j.issn.1000-0887.2011.01.004
基金项目: 创新研究群体基金资助项目(50921001);973资助项目(2010CB832700)
详细信息
    作者简介:

    赵勇(1981- ),男,博士生(联系人.E-mail:fluid@mail.dlut.edu.cn);宗智(1964- )男,教授,博士(E-mail:zongzhi@dlut.edu.cn);邹文楠(1968- ),男,教授,博士(E-mail:zouwn@ncu.edu.cn).

  • 中图分类号: O357

Numerical Simulation of Vortex Evolution Based on Adaptive Wavelet Method

  • 摘要: 该文考察了小波自适应方法用于涡旋运动的演化过程.首先,通过两个初边值问题,说明小波方法具有可精度可控和局部结构自动捕捉的能力.然后,计算了涡旋的合并过程,结果表明,小波方法可以准确高效的应用于流动涡旋的演化预测,进而,讨论了小波方法在湍流数值模拟中的应用.
  • [1] 梅树立, 陆启韶, 张森文, 金俐. 偏微分方程的区间小波自适应精细积分法[J]. 应用数学和力学, 2005, 26(3): 333-340.(MEI Shu-li, LU Qi-shao, ZHANG Sen-wen, JIN Li. Adaptive interval wavelet precise integration method for partial differential equations[J]. Applied Mathematics and Mechanics(English Edition), 2005, 26 (3): 364-371.)
    [2] Beylkin G, Keiser J. On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases[J]. Journal of Computational Physics , 1997, 132(2): 233-259. doi: 10.1006/jcph.1996.5562
    [3] 宗智,赵勇,邹文楠. 小波插值方法自适应数值求解时间进化微分方程[J].计算力学学报, 2010, 27(1): 65-69.(ZONG Zhi, ZHAO Yong, ZOU Wen-nan. Numerical solution for differential evolutional equation using adaptive interpolation wavelet method[J]. Journal of Computational Mechanics, 2010, 27(1): 65-69. (in Chinese))
    [4] Qian S, Wiess J. Wavelets and the numerical solution of partial differential equations [J]. Journal of Computational Physics, 1993, 106(1):155-175.
    [5] Farge M, Schneider K, Kevlahan N K R. Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis[J]. Physics of Fluids, 1999, 11(8):2187-2201.
    [6] Farge M, Kaiser S. Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets[J]. Flow, Turbulence and Combustion, 2001, 66(4):393-426.
    [7] 郭会芬, 邱翔, 刘宇陆.小波变换在湍流数值研究中的应用[J]. 计算力学学报, 2006, 23(1): 58-64.(GUO Hui-fen, QIU Xiang, LIU Yu-lu. Application of wavelet analysis in numerical study of turbulence[J]. Journal of Computational Mechanics, 2006 , 23(1): 58-64. (in Chinese))
    [8] 夏振炎, 田砚, 姜楠. 用子波谱分析壁湍流多尺度结构的能量传递[J]. 应用数学和力学, 2009, 30(4):409-416.(XIA Zhen-yan, TIAN Yan, JIANG Nan. Wavelet spectrum analysis on energy transfer of multi-scale structures in wall turbulence[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(4): 435-443. )
    [9] Goldstein D E, Vasilyev O V. Stochastic coherent adaptive large eddy simulation method[J]. Physics of Fluids, 2004, 16(7):2497-2513. doi: 10.1063/1.1736671
    [10] Schneider K, Kevlahan N K R, Farge M. Comparison of an adaptive wavelet method and nonlinearly filtered pseudo-spectral methods for two-dimensional turbulence[J]. Theory and Computational Fluid Dynamics, 1997, 9(3): 191-206. doi: 10.1007/s001620050040
    [11] Kumar B V R, Mehra M. A time accurate pseudo-wavelet scheme for two-dimensional turbulence[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2005, 3(4):587-599. doi: 10.1142/S0219691305001019
    [12] Farge M.Wavelet transforms and their application to turbulence[J]. Ann Rev Fluid Mech, 1992, 24:395-457. doi: 10.1146/annurev.fl.24.010192.002143
  • 加载中
计量
  • 文章访问数:  1096
  • HTML全文浏览量:  20
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-02
  • 修回日期:  2010-10-29
  • 刊出日期:  2011-01-15

目录

    /

    返回文章
    返回