## 留言板

M·阿斯拉夫, M·M·阿斯拉夫. 微极流体向受热面的MHD驻点流动[J]. 应用数学和力学, 2011, 32(1): 44-52. doi: 10.3879/j.issn.1000-0887.2011.01.005
 引用本文: M·阿斯拉夫, M·M·阿斯拉夫. 微极流体向受热面的MHD驻点流动[J]. 应用数学和力学, 2011, 32(1): 44-52.
Muhammad Ashraf, M. M. Ashraf. MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface[J]. Applied Mathematics and Mechanics, 2011, 32(1): 44-52. doi: 10.3879/j.issn.1000-0887.2011.01.005
 Citation: Muhammad Ashraf, M. M. Ashraf. MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface[J]. Applied Mathematics and Mechanics, 2011, 32(1): 44-52.

• 中图分类号: O361

## MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface

• 摘要: 分析了有均匀横向磁场作用时，导电微极流体垂直冲击受热面时形成的二维驻点流动问题．应用适当的相似转换，将连续、动量、角动量及热量的控制方程，及其相应的边界条件，简化为无量纲形式．然后，利用以有限差分离散化为基础的算法，求解简化了的自相似非线性方程．用Richardson外推法，进一步求精其结果．以图表形式表示磁场参数、微极性参数、Prandtl数对流动和温度场的影响，说明了其解的重要特性．研究表明，随着磁场参数的增大，速度和热边界层厚度变小了．与Newton流体相比较，微极流体的剪应力和传热率出现明显的减少，这对聚合物生产过程中流体的流动和热量控制是有益的．
•  [1] Hiemenz K. Die Grenzschicht in einem in dem gleichformingen flussigkeitsstrom eingetauchten gerade kreiszylinder[J]. Dingler Polytechnic Journal, 1911, 326: 321-340. [2] Homann F. Der einfluss grosser zahigkeit bei der stromung um den zylinder und um die kugel[J].ZAMM , 1936, 16: 153-164. [3] Wang C Y. Impinging stagnation flows[J]. Phys Fluids , 1987, 30(3): 915-917. doi: 10.1063/1.866345 [4] Ariel P D. Hiemenz flow in hydromagnetics[J]. Acta Mech, 1994, 103(1/4): 31-43. [5] Mahapatra T R, Gupta A S. Magnetohydrodynamic stagnation point flow towards a stretching sheet[J].Acta Mech, 2001, 152(1/4): 191-196. [6] Chamkha A J, Issa Camille. Effects of heat generation/absorption and thermophoresis on hydromagnatic flow with heat and mass transfer over a flat surface[J]. International Journal of Numerical Method for Heat and Fluid Flow, 2000, 10(4): 432-449. [7] 朱婧，郑连存，张欣欣. 具有延伸表面的驻点流动和传热问题的级数解[J]. 应用数学和力学，2009, 30(4): 432-456.(ZHU Jing, ZHENG Lian-cun, ZHANG Xin-xin. Analytic solution to stagnation point flow and heat transfer over a stretching sheet based on homotopy analysis[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(4): 463-474.) [8] Hoyt J W, Fabula A G. The effect of additives on fluid friction[R]. U S Naval Ordinance Test Station Report, 1964. [9] Eringen A C. Theory of micropolar continua[C] Proceedings of the Ninth Midwestern Conference, 1965: 23. [10] Eringen A C. Simple microfluids[J]. Int J Eng Sci, 1964, 2(2): 205-217. [11] Eringen A C. Theory of micropolar fluids[J]. J Math, 1966, 16: 1-18. [12] Ariman T, Turk M A, Sylvester N D. Microcontinum fluid mechanics—a review[J]. Int J Eng Sci, 1973, 11(8): 905- 930. [13] Ariman T, Turk M A, Sylvester N D. Application of microcontinum fluid mechanics[J]. Int J Eng Sci, 1974, 12: 273-293. [14] Guram G S, Smith C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Comp Math Appl, 1980, 6(2): 213-233. [15] Ahmadi G. Self-similar solution of incompressible micropolar boundary layer flow over a semi infinite plate[J]. Int J Eng Sci, 1972, 14(7): 639-646. [16] CHENG Long-chang. Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and boundary effects[J]. J Phys D: Appl Phys, 2006, 39(6): 1132-1140. [17] Lok Y Y, Pop I, Chamkha A J. Non-orthognal stagnation point flow of a micropolar fluid[J]. Int J Eng Sci, 2007, 45(1): 173-184. [18] Seddeek M A. Flow of a magneto micropolar fluid past a continuously moving plate[J]. Physics Letters A, 2003, 306(4): 255-257. [19] Ishak A, Nazar R, Pop I. Stagnation flow of a micropolar fluid towards a vertical permeable surface[J]. International Communications in Heat and Mass Transfer, 2008, 35(3): 276-281. [20] Ashraf Muhammad, Anwar Kamal M, Syed K S. Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel[J]. Computers and Fluids, 2009, 38(10): 1895-1902. [21] Ashraf Muhammad, Anwar Kamal M, Syed K S. Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks[J]. Acta Mechanica Sinica , 2009, 25(6): 787-794. [22] Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point flow towards a stretching sheet[J]. Physica A , 2009, 388(17): 3377-3383. [23] Ishak A, Lok Y Y, Pop I. Stagnation point flow over a shrinking sheet in a micropolar fluid[J]. Chem Eng Comm, 2010, 197(11): 1417-1427. [24] Shercliff J A. A Text Book of Magnetohydrodynamics[M]. Oxford: Pergamon Press, 1965. [25] Rossow V J. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field[R]. NACA, Tech Report 1358, 1958. [27] Gerald C F. Applied Numerical Analysis[M]. Massachusetts: Addison Wesley Publishing Company Reading, 1974. [27] Milne W E. Numerical Solutions of Different Equations[M]. New York: John Willy and Sons Inc,1953. [28] Hildebrand F B. Introduction to Numerical Analysis[M]. Tata McGraw Hill Publishing Company Ltd, 1978. [29] Syed K S, Tupholme G E, Wood A S. Iterative solution of fluid flow in finned tubes[C]Taylor C, Cross J T. Proceeding of the 10th International Conference on Numerical Methods in Laminar and Turbulent Flow.Swansea, UK 429-440: Pineridge Press, 1997: 21-25. [30] Deuflhard P. Order and step size control in extrapolation methods[J]. Numer Math, 1983, 41(3): 399-422 . [31] Guram G S, Anwar M. Micropolar flow due to a rotating disc with suction and injection[J].ZAMM, 1981, 61(11): 589-605. [32] Takhar H S, Bhargaval R, Agraval R S, Balaji A V S. Finite element solution of micropolar flow and heat transfer between two porous discs[J]. Int J Eng Sci, 2000, 38(17): 1907-1922. [33] Ashraf Muhammad, Anwar Kamal M, Syed K S. Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk[J]. Appl Math Modell, 2009, 33(4): 1933-1943. [34] Pantokratoras A. Comment on “laminar boundary layer flow over a horizontal permeable flat plate” [J]. Appl Math Comput, 2006, 182(2): 1-2. [35] Pantokratoras A. A common error made in investigation of boundary layer flows[J]. Appl Math Model, 2009, 33(1): 413-422.

##### 计量
• 文章访问数:  1115
• HTML全文浏览量:  40
• PDF下载量:  714
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-08-05
• 修回日期:  2010-11-10
• 刊出日期:  2011-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈