留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微极流体向受热面的MHD驻点流动

M·阿斯拉夫 M·M·阿斯拉夫

M·阿斯拉夫, M·M·阿斯拉夫. 微极流体向受热面的MHD驻点流动[J]. 应用数学和力学, 2011, 32(1): 44-52. doi: 10.3879/j.issn.1000-0887.2011.01.005
引用本文: M·阿斯拉夫, M·M·阿斯拉夫. 微极流体向受热面的MHD驻点流动[J]. 应用数学和力学, 2011, 32(1): 44-52. doi: 10.3879/j.issn.1000-0887.2011.01.005
Muhammad Ashraf, M. M. Ashraf. MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface[J]. Applied Mathematics and Mechanics, 2011, 32(1): 44-52. doi: 10.3879/j.issn.1000-0887.2011.01.005
Citation: Muhammad Ashraf, M. M. Ashraf. MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface[J]. Applied Mathematics and Mechanics, 2011, 32(1): 44-52. doi: 10.3879/j.issn.1000-0887.2011.01.005

微极流体向受热面的MHD驻点流动

doi: 10.3879/j.issn.1000-0887.2011.01.005
详细信息
  • 中图分类号: O361

MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface

  • 摘要: 分析了有均匀横向磁场作用时,导电微极流体垂直冲击受热面时形成的二维驻点流动问题.应用适当的相似转换,将连续、动量、角动量及热量的控制方程,及其相应的边界条件,简化为无量纲形式.然后,利用以有限差分离散化为基础的算法,求解简化了的自相似非线性方程.用Richardson外推法,进一步求精其结果.以图表形式表示磁场参数、微极性参数、Prandtl数对流动和温度场的影响,说明了其解的重要特性.研究表明,随着磁场参数的增大,速度和热边界层厚度变小了.与Newton流体相比较,微极流体的剪应力和传热率出现明显的减少,这对聚合物生产过程中流体的流动和热量控制是有益的.
  • [1] Hiemenz K. Die Grenzschicht in einem in dem gleichformingen flussigkeitsstrom eingetauchten gerade kreiszylinder[J]. Dingler Polytechnic Journal, 1911, 326: 321-340.
    [2] Homann F. Der einfluss grosser zahigkeit bei der stromung um den zylinder und um die kugel[J].ZAMM , 1936, 16: 153-164. doi: 10.1002/zamm.19360160304
    [3] Wang C Y. Impinging stagnation flows[J]. Phys Fluids , 1987, 30(3): 915-917. doi: 10.1063/1.866345
    [4] Ariel P D. Hiemenz flow in hydromagnetics[J]. Acta Mech, 1994, 103(1/4): 31-43. doi: 10.1007/BF01180216
    [5] Mahapatra T R, Gupta A S. Magnetohydrodynamic stagnation point flow towards a stretching sheet[J].Acta Mech, 2001, 152(1/4): 191-196. doi: 10.1007/BF01176953
    [6] Chamkha A J, Issa Camille. Effects of heat generation/absorption and thermophoresis on hydromagnatic flow with heat and mass transfer over a flat surface[J]. International Journal of Numerical Method for Heat and Fluid Flow, 2000, 10(4): 432-449. doi: 10.1108/09615530010327404
    [7] 朱婧,郑连存,张欣欣. 具有延伸表面的驻点流动和传热问题的级数解[J]. 应用数学和力学,2009, 30(4): 432-456.(ZHU Jing, ZHENG Lian-cun, ZHANG Xin-xin. Analytic solution to stagnation point flow and heat transfer over a stretching sheet based on homotopy analysis[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(4): 463-474.)
    [8] Hoyt J W, Fabula A G. The effect of additives on fluid friction[R]. U S Naval Ordinance Test Station Report, 1964.
    [9] Eringen A C. Theory of micropolar continua[C] Proceedings of the Ninth Midwestern Conference, 1965: 23.
    [10] Eringen A C. Simple microfluids[J]. Int J Eng Sci, 1964, 2(2): 205-217. doi: 10.1016/0020-7225(64)90005-9
    [11] Eringen A C. Theory of micropolar fluids[J]. J Math, 1966, 16: 1-18.
    [12] Ariman T, Turk M A, Sylvester N D. Microcontinum fluid mechanics—a review[J]. Int J Eng Sci, 1973, 11(8): 905- 930. doi: 10.1016/0020-7225(73)90038-4
    [13] Ariman T, Turk M A, Sylvester N D. Application of microcontinum fluid mechanics[J]. Int J Eng Sci, 1974, 12: 273-293. doi: 10.1016/0020-7225(74)90059-7
    [14] Guram G S, Smith C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Comp Math Appl, 1980, 6(2): 213-233.
    [15] Ahmadi G. Self-similar solution of incompressible micropolar boundary layer flow over a semi infinite plate[J]. Int J Eng Sci, 1972, 14(7): 639-646.
    [16] CHENG Long-chang. Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and boundary effects[J]. J Phys D: Appl Phys, 2006, 39(6): 1132-1140. doi: 10.1088/0022-3727/39/6/019
    [17] Lok Y Y, Pop I, Chamkha A J. Non-orthognal stagnation point flow of a micropolar fluid[J]. Int J Eng Sci, 2007, 45(1): 173-184. doi: 10.1016/j.ijengsci.2006.04.016
    [18] Seddeek M A. Flow of a magneto micropolar fluid past a continuously moving plate[J]. Physics Letters A, 2003, 306(4): 255-257. doi: 10.1016/S0375-9601(02)01513-X
    [19] Ishak A, Nazar R, Pop I. Stagnation flow of a micropolar fluid towards a vertical permeable surface[J]. International Communications in Heat and Mass Transfer, 2008, 35(3): 276-281. doi: 10.1016/j.icheatmasstransfer.2007.07.007
    [20] Ashraf Muhammad, Anwar Kamal M, Syed K S. Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel[J]. Computers and Fluids, 2009, 38(10): 1895-1902. doi: 10.1016/j.compfluid.2009.04.009
    [21] Ashraf Muhammad, Anwar Kamal M, Syed K S. Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks[J]. Acta Mechanica Sinica , 2009, 25(6): 787-794. doi: 10.1007/s10409-009-0307-x
    [22] Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point flow towards a stretching sheet[J]. Physica A , 2009, 388(17): 3377-3383. doi: 10.1016/j.physa.2009.05.026
    [23] Ishak A, Lok Y Y, Pop I. Stagnation point flow over a shrinking sheet in a micropolar fluid[J]. Chem Eng Comm, 2010, 197(11): 1417-1427. doi: 10.1080/00986441003626169
    [24] Shercliff J A. A Text Book of Magnetohydrodynamics[M]. Oxford: Pergamon Press, 1965.
    [25] Rossow V J. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field[R]. NACA, Tech Report 1358, 1958.
    [27] Gerald C F. Applied Numerical Analysis[M]. Massachusetts: Addison Wesley Publishing Company Reading, 1974.
    [27] Milne W E. Numerical Solutions of Different Equations[M]. New York: John Willy and Sons Inc,1953.
    [28] Hildebrand F B. Introduction to Numerical Analysis[M]. Tata McGraw Hill Publishing Company Ltd, 1978.
    [29] Syed K S, Tupholme G E, Wood A S. Iterative solution of fluid flow in finned tubes[C]Taylor C, Cross J T. Proceeding of the 10th International Conference on Numerical Methods in Laminar and Turbulent Flow.Swansea, UK 429-440: Pineridge Press, 1997: 21-25.
    [30] Deuflhard P. Order and step size control in extrapolation methods[J]. Numer Math, 1983, 41(3): 399-422 . doi: 10.1007/BF01418332
    [31] Guram G S, Anwar M. Micropolar flow due to a rotating disc with suction and injection[J].ZAMM, 1981, 61(11): 589-605. doi: 10.1002/zamm.19810611107
    [32] Takhar H S, Bhargaval R, Agraval R S, Balaji A V S. Finite element solution of micropolar flow and heat transfer between two porous discs[J]. Int J Eng Sci, 2000, 38(17): 1907-1922. doi: 10.1016/S0020-7225(00)00019-7
    [33] Ashraf Muhammad, Anwar Kamal M, Syed K S. Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk[J]. Appl Math Modell, 2009, 33(4): 1933-1943. doi: 10.1016/j.apm.2008.05.002
    [34] Pantokratoras A. Comment on “laminar boundary layer flow over a horizontal permeable flat plate” [J]. Appl Math Comput, 2006, 182(2): 1-2. doi: 10.1016/j.amc.2006.03.015
    [35] Pantokratoras A. A common error made in investigation of boundary layer flows[J]. Appl Math Model, 2009, 33(1): 413-422. doi: 10.1016/j.apm.2007.11.009
  • 加载中
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  40
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-05
  • 修回日期:  2010-11-10
  • 刊出日期:  2011-01-15

目录

    /

    返回文章
    返回