## 留言板

 引用本文: 陳文立, 楊俞青, 李浩榕, J·L·萨拉萨尔. 强迫对流管道内壁结垢层几何形状的逆运算估计[J]. 应用数学和力学, 2011, 32(1): 53-65.
CHEN Wen-lih, YANG Yu-ching, LEE Haw-long, Jose Leon Salazar. Inverse Estimation for the Unknown Fouling Geometry on the Inner Wall of a Forced-Convection Pipe[J]. Applied Mathematics and Mechanics, 2011, 32(1): 53-65. doi: 10.3879/j.issn.1000-0887.2011.01.006
 Citation: CHEN Wen-lih, YANG Yu-ching, LEE Haw-long, Jose Leon Salazar. Inverse Estimation for the Unknown Fouling Geometry on the Inner Wall of a Forced-Convection Pipe[J]. Applied Mathematics and Mechanics, 2011, 32(1): 53-65.

• 中图分类号: O369

## Inverse Estimation for the Unknown Fouling Geometry on the Inner Wall of a Forced-Convection Pipe

• 摘要: 利用逆运算法中的共轭梯度法与差异原理，通过测量管壁内的温度，来估算一管流系统内壁结垢层厚度的几何形状．过程中未预先设定结垢层厚度的函数形式．因此，可将这类逆运算问题归类为“函数预测”．逆运算过程的管壁温度测量值，可由直接解法所求得的温度数值来仿真实际的测量温度．并用测量误差来检验逆运算分析的正确性．数值实验结果显示，管内壁结垢层厚度的几何形状可获得极佳的估算值．所提出的技术可用作管路维修的预警系统，当管壁结垢层厚度超出某预先设定值时可适时发出维修警示．
•  [1] Jarny Y, Ozisik M N, Bardon J B. A general optimization method using an adjoint equation for solving multidimensional inverse heat conduction[J]. Int J Heat Mass Transfer, 1991, 34(11): 2911-2919. [2] Yang Y C, Chu S S, Chang W J. Thermally-induced optical effects in optical fibers by inverse methodology[J]. J Appl Phys, 2004, 95(9): 5159-5165. [3] Chen W L, Yang Y C, Lee H L. Inverse problem in determining convection heat transfer coefficient of an annular fin[J]. Energy Conv Manag, 2007, 48(4): 1081-1088. [4] Chiang C C, Chou S K. Inverse geometry design problem in optimizing hull surfaces[J]. J Ship Res, 1998, 42(2): 79-85. [5] Huang C H, Chen H M. An inverse geometry problem of identifying growth of boundary shapes in a multiple region domain[J]. Numer Heat Transfer A, 1999, 35(4): 435-450. [6] Park H M, Shin H J. Empirical reduction of modes for the shape identification problems of heat conduction systems[J]. Comput Methods Appl Mech Eng, 2003, 192(15): 1893-1908. [7] Park H M, Shin H J. Shape identification for natural convection problems using the adjoint variable method[J]. J Comput Phys, 2003, 186(1): 198-211. [8] Divo E, Kassab A J, Rodriguez F. An efficient singular superposition technique for cavity detection and shape optimization[J]. Numer Heat Transfer B, 2004, 46(1): 1-30. [9] Kwag D S, Park I S, Kim W S. Inverse geometry problem of estimating the phase front motion of ice in a thermal storage system[J]. Inverse Problems in Eng, 2004, 12(1): 1-15. [10] Su C R, Chen C K. Geometry estimation of the furnace inner wall by an inverse approach[J]. Int J Heat Mass Transfer, 2007, 50(19/20): 3767-3773. [11] 杨旭东， 乔志德. 基于共轭方程法的跨音速机翼气动力优化设计[J]. 航空学报， 2003, 24(1): 1-5.（YANG Xu-dong, QIAO Zhi-de. Optimum aerodynamic design of transonic wing based on adjoint equations method[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 1-5.（in Chinese）） [12] (杨旭东， 乔志德， 朱兵. 基于控制理论和NS方程的气动设计方法研究[J]. 空气动力学学报, 2005, 23(1): 46-51.(YANG Xu-dong, QIAO Zhi-de, ZHU Bing. Aerodynamic design method based on control theory and Navier-Stokes equations[J]. Acta Aerodynamica Sinica, 2005, 23(1): 46-51.（in Chinese）） [13] Yang Y C, Chang W J. Simultaneous inverse estimation for boundary heat and moisture fluxes of a double-layer annular cylinder with interface resistance[J]. Appl Math Comput, 2006, 176(2): 594-608. [14] Chen W L, Yang Y C, Lee H L. Estimating the absorptivity in laser processing by inverse methodology[J]. Appl Math Comput, 2007, 190(1): 712-721. [15] Lee H L, Yang Y C, Chang W J, Wu T S. Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance[J]. Appl Math Comput, 2009, 209(2): 211-221. [16] Alifanov O M, Artyukhin E A. Regularized numerical solution of nonlinear inverse heat-conduction problem[J]. J Eng Phys, 1975, 29(1): 934-938. [17] Zueco J, Alhama F. Simultaneous inverse determination of temperature-dependent thermophysical properties in fluids using the network simulation method[J]. Int J Heat Mass Transfer, 2007, 50(15/16): 3234-3243. [18] Alifanov O M. Inverse Heat Transfer Problems[M]. New York: Springer-Verlag, 1994. [19] Alifanov O M. Application of the regularization principle to the formulation of approximate solution of inverse heat conduction problem[J]. J Eng Phys, 1972, 23(6): 1566-1571. [20] Lien F S, Chen W L, Leschziner M A. A multiblock implementation of a non-orthogonal, collocated finite volume algorithm for complex turbulent flows[J]. Int J Numer Methods Fluids, 1996, 23(6): 567-588.

##### 计量
• 文章访问数:  1133
• HTML全文浏览量:  62
• PDF下载量:  713
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-08-25
• 修回日期:  2010-11-04
• 刊出日期:  2011-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈