## 留言板

 引用本文: 张剑, 叶见曙, 周储伟. 基于Fibonacci序列寻优理论薄壁弯箱材料常数的Powell优化识别[J]. 应用数学和力学, 2011, 32(1): 93-102.
ZHANG Jian, YE Jian-shu, ZHOU Chu-wei. Powell’s Optimal Identification of Material Constants of Thin-Walled Box Girders Based on Fibonacci Series Search Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 93-102. doi: 10.3879/j.issn.1000-0887.2011.01.010
 Citation: ZHANG Jian, YE Jian-shu, ZHOU Chu-wei. Powell’s Optimal Identification of Material Constants of Thin-Walled Box Girders Based on Fibonacci Series Search Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 93-102.

## 基于Fibonacci序列寻优理论薄壁弯箱材料常数的Powell优化识别

##### doi: 10.3879/j.issn.1000-0887.2011.01.010

###### 作者简介:张剑(1978- ),男,安徽青阳人,博士(联系人.Tel:+86-25-83713137;E-mail:zjmech@163.com).
• 中图分类号: O221.2;TU375

## Powell’s Optimal Identification of Material Constants of Thin-Walled Box Girders Based on Fibonacci Series Search Method

• 摘要: 对于薄壁弯箱结构，推导了材料常数的动态Bayes误差函数，提出步长的一维Fibonacci序列自动寻优方案后，利用Powell优化理论研究了薄壁弯箱材料常数的动态识别方法，同时给出了具体的计算步骤，并研制了相应的计算程序．算例分析表明，Powell理论用于弯箱材料常数识别时表现出良好的数值稳定性和收敛性，在迭代过程中，Powell理论不涉及有限元偏导数处理，与以往材料常数的梯度优化方法相比，计算效率较高；建立的动态Bayes误差函数能同时计入系统参数的随机性和系统响应的随机性；提出的Fibonacci序列寻优方案无需通过试算确定最优步长所在区间，有效地解决最优步长的一维自动寻优问题．
•  [1] Sennah Khaled M, Kennedy John B. Literature review in analysis of box-girder bridges[J]. Journal of Bridge Engineering, 2002, 7(2): 134-143. [2] Babu K, Devdas M. Correction of errors in simplified transverse bending analysis of concrete box-girder bridges[J]. Journal of Bridge Engineering, 2005, 10(6): 650-657. [3] 张剑, 叶见曙, 赵新铭. 基于Novozhilov理论薄壁弯箱位移参数的动态Bayes估计[J]. 工程力学, 2007, 24(1): 71-77.(ZHANG Jian, YE Jian-shu, ZHAO Xin-ming. Dynamic Bayesian estimation of displacement parameters of thin-walled curve box based on Novozhilov theory[J]. Engineering Mechanics, 2007, 24(1): 71-77.(in Chinese)) [4] 赵振铭, 陈宝春. 杆系与箱型梁桥结构分析及程序设计[M]. 广州: 华南理工大学出版社, 1997.(ZHAO Zhen-Ming, CHEN Bao-chun. Analysis of Pole System and Box Girders Bridge and Program Designing[M]. Guangzhou: Huanan University of Science and Engineering Press, 1997.(in Chinese)) [5] 魏新江, 张金菊, 张世民. 盾构隧道施工引起地面最大沉降探索[J]. 岩土力学, 2008, 29(2): 445-448.(WEI Xin-jiang, ZHANG Jin-ju, ZHANG Shi-min. Grope for shield tunnel construction induced ground maximal settlement[J]. Rock and Soil Mechanics, 2008, 29(2): 445-448.(in Chinese)) [6] Hinton E, Owen D R J. Finite Element Software for Plates and Shells[M]. Swansea,UK: Pineridge Press Ltd, 1984. [7] Chi S Y, Chern J C, Lin C C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 159-165. [8] Modak S V, Kundra T K, Nakra B C. Prediction of dynamic characteristics using updated finite element models[J]. Joumal of Sound and Vibration, 2002, 254(3): 447-467. [9] 李海生. 多梁式混凝土梁桥的有限元模型修正技术研究[D]. 硕士学位论文. 南京: 东南大学, 2009.(LI Hai-sheng. Research on finite element model updating of multi-girder concrete bridges[D]. Master Thesis. Nanjing: Southeast University, 2009.(in Chinese)) [10] 张剑, 叶见曙, 王承强. 基于共轭梯度法带隔板连续薄壁直箱位移参数的动态Bayes估计[J]. 计算力学学报, 2008, 25(4): 574-580.(Zhang J, Ye J S, Wang C Q. Dynamic Bayesian estimation of displacement parameters of continuous thin walled straight box with segregating slab based on CG method[J]. Chinese Journal of Computational Mechanics, 2008, 25(4): 574-580.(in Chinese)) [11] 张剑, 叶见曙, 赵新铭. 基于Novozhilov理论连续弯箱位移参数的动态Bayes估计[J]. 应用数学和力学, 2007, 28(1): 77-84.(Zhang J, Ye J S, Zhao X M. Dynamic Bayesian estimation of displacement parameters of continuous curve box based on Novozhilov theory[J]. Applied Mathematics and Mechanics(English Edition), 2007, 28(1): 77-84.) [12] Luo Q Z, Li Q S, Tang J. Shear lag in box girder bridges[J]. Journal of Bridge Engineering, 2002, 7(5): 308-313. [13] 薛毅. 最优化原理与方法[M]. 北京: 北京工业大学出版社, 2001.(XUE Yi. Optimization Theory and Method[M]. Beijing: Beijing University of Technology Press, 2001.(in Chinese))

##### 计量
• 文章访问数:  1244
• HTML全文浏览量:  81
• PDF下载量:  777
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-08-29
• 修回日期:  2010-12-01
• 刊出日期:  2011-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈