留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑感应磁场影响时,伸展表面上的MHD驻点流动及其热传递

F·M·阿里 R·纳扎尔 N·M·阿里菲 I·波普

F·M·阿里, R·纳扎尔, N·M·阿里菲, I·波普. 考虑感应磁场影响时,伸展表面上的MHD驻点流动及其热传递[J]. 应用数学和力学, 2011, 32(4): 391-399. doi: 10.3879/j.issn.1000-0887.2011.04.003
引用本文: F·M·阿里, R·纳扎尔, N·M·阿里菲, I·波普. 考虑感应磁场影响时,伸展表面上的MHD驻点流动及其热传递[J]. 应用数学和力学, 2011, 32(4): 391-399. doi: 10.3879/j.issn.1000-0887.2011.04.003
F. M. Ali, R. Nazar, N. M. Arifin, I. Pop. MHD Stagnation-Point Flow and Heat Transfer Towards a Stretching Sheet With Induced Magnetic Field[J]. Applied Mathematics and Mechanics, 2011, 32(4): 391-399. doi: 10.3879/j.issn.1000-0887.2011.04.003
Citation: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop. MHD Stagnation-Point Flow and Heat Transfer Towards a Stretching Sheet With Induced Magnetic Field[J]. Applied Mathematics and Mechanics, 2011, 32(4): 391-399. doi: 10.3879/j.issn.1000-0887.2011.04.003

考虑感应磁场影响时,伸展表面上的MHD驻点流动及其热传递

doi: 10.3879/j.issn.1000-0887.2011.04.003
基金项目: 马来西亚高等教育部研究基金资助项目(UKM-ST-07-FRGS0036-2009)
详细信息
  • 中图分类号: O345

MHD Stagnation-Point Flow and Heat Transfer Towards a Stretching Sheet With Induced Magnetic Field

  • 摘要: 考虑感应磁场的影响,研究不可压缩粘性流体在伸展表面上,作稳定磁流体动力学(MHD)的驻点流动.通过相似变换,将非线性的偏微分方程,变换成为常微分方程.用打靶法数值地求解变换后的边界层方程,得到不同的磁场参数和Prandtl数Pr时的数值解.对a/c>1和a/c<1两种情况(其中a和c均为正值),讨论感应磁场参数对表面摩擦因数、局部Nusselt数、速度和温度的影响,绘出变化曲线并给予讨论.
  • [1] Tzirtzilakis E E,Kafoussias N G. Biomagnetic fluid flow over a stretching sheet with non linear temperature dependent magnetization[J]. Journal of Applied Mathematics and Mechanics (ZAMP), 2003, 54(4): 551-565.
    [2] Tzirtzilakis E E, Tanoudis G B. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer[J]. International Journal for Numerical Methods in Heat and Fluid Flow, 2003, 13(7): 830-848 . doi: 10.1108/09615530310502055
    [3] Tzirtzilakis E E, Kafoussias N G. Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet[J]. ASME Journal of Heat Transfer, 2010, 132(1): 011702-1-011702-8. doi: 10.1115/1.3194765
    [4] Al-Odat M Q, Damseh R A, Al-Azab T A. Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect[J]. International Journal of Applied Mechanics and Engineering, 2006,11(2): 289-299.
    [5] Tongli B, Zheng L C, Zhang X X. Multiple solutions of laminar flow in channels with a transverse magnetic field[J]. Chinese Physics Letters, 2009, 26(9): 094101-1-094101-3. doi: 10.1088/0256-307X/26/9/094101
    [6] Hiemenz K. Die Grenzschicht an einem in den gleichfrmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder[J]. Dingler Polytech Journal, 1911, 326: 321-324.
    [7] Eckert E R G. Die Berechnung des Warmeubergangs in der laminaren Grenzschicht umstromter Korpe[J]. VDI Forschungsheft, 1942,416: 1-23.
    [8] Mahapatra T R, Gupta A S. Magnetohydrodynamic stagnation point flow towards a stretching sheet[J]. Acta Mechanica, 2001, 152(1/4): 191-196. doi: 10.1007/BF01176953
    [9] Mahapatra T R, Gupta A S. Heat tansfer in stagnation-point flow towards a stretching sheet[J]. Heat and Mass Transfer, 2002,38(6): 517-521. doi: 10.1007/s002310100215
    [10] Mahapatra T R, Gupta A S. Stagnation-point flow of a viscoelastic fluid towards a stretching surface[J]. International Journal of Non-Linear Mechanics, 2004, 39(5): 811-820. doi: 10.1016/S0020-7462(03)00044-1
    [11] Nazar R, Amin N, Filip D, Pop I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet[J]. International Journal of Engineering Science, 2004, 42(11/12): 1241-1253. doi: 10.1016/j.ijengsci.2003.12.002
    [12] Ishak A, Nazar R, Pop I. Mixed convection boundary layers in the stagnation-point flow towards a stretching vertical sheet[J]. Meccanica, 2006, 41(5): 509-518. doi: 10.1007/s11012-006-0009-4
    [13] Wang C Y. Stagnation slip flow and heat transfer on a moving plate[J]. Chemical Engineering Science, 2006, 61(23), 7668-7672.
    [14] Gorla R S R. Non-Newtonian fluid at a stagnation point in the presence of a transverse magnetic field[J]. Mechanics Research Communications, 1976, 3(1): 1-6. doi: 10.1016/0093-6413(76)90074-4
    [15] 朱婧,郑连存,张欣欣. 具有伸展表面的驻点流动和传热问题的级数解[J].应用数学和力学,2009, 30(4): 432-442. (ZHU Jing, ZHENG Lian-cen, ZHANG Xin-xin. Analytical solution to stagnation-point flow and heat transfer over a stretching sheet based on homotopy analysis[J]. Applied Mathematics and Mechanics (English Edition), 2009,30(4): 463-474.)
    [16] 朱婧,郑连存,张志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动[J] 应用数学和力学,2009, 31(4): 411-419. (ZHU Jing, ZHENG Lian-cen, ZHANG Zhi-gang. Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(4): 439-448.) doi: 10.1007/s10483-010-0404-z
    [17] Kumari M, Takhar H S, Nath G. MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux[J]. Wrme-und Stoffübertr, 1990, 25(6): 331-336.
    [18] Takhar H S, Kumari M, Nath G. Unsteady free convection flow under the influence of a magnetic field[J]. Archive of Applied Mechanics, 1993, 63(4/5): 313-321. doi: 10.1007/BF00793897
    [19] Cowling T G. Magnetohydrodynamics[M]. New York : Interscience Publication, 1957.
    [20] Davies T V. The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infinite flat plate—Ⅰ: uniform conditions at infinity[J]. Proc Roy Soc A, 1962, 273(1355): 496-508.
    [21] Hartmann J. Theory of the laminar flow of an electrically conducting liquid in a homogenous magnetic field[J]. Math-Fys Medd, 1937,15(6): 1-28.
    [22] Meade D B, Haran B S, White R E. The shooting technique for the solution of two-point boundary value problems[J]. Maple Tech, 1996, 3(1): 85-93.
  • 加载中
计量
  • 文章访问数:  1224
  • HTML全文浏览量:  51
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-27
  • 修回日期:  2011-01-24
  • 刊出日期:  2011-04-15

目录

    /

    返回文章
    返回