## 留言板

F·M·阿里, R·纳扎尔, N·M·阿里菲, I·波普. 考虑感应磁场影响时，伸展表面上的MHD驻点流动及其热传递[J]. 应用数学和力学, 2011, 32(4): 391-399. doi: 10.3879/j.issn.1000-0887.2011.04.003
 引用本文: F·M·阿里, R·纳扎尔, N·M·阿里菲, I·波普. 考虑感应磁场影响时，伸展表面上的MHD驻点流动及其热传递[J]. 应用数学和力学, 2011, 32(4): 391-399.
F. M. Ali, R. Nazar, N. M. Arifin, I. Pop. MHD Stagnation-Point Flow and Heat Transfer Towards a Stretching Sheet With Induced Magnetic Field[J]. Applied Mathematics and Mechanics, 2011, 32(4): 391-399. doi: 10.3879/j.issn.1000-0887.2011.04.003
 Citation: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop. MHD Stagnation-Point Flow and Heat Transfer Towards a Stretching Sheet With Induced Magnetic Field[J]. Applied Mathematics and Mechanics, 2011, 32(4): 391-399.

• 中图分类号: O345

## MHD Stagnation-Point Flow and Heat Transfer Towards a Stretching Sheet With Induced Magnetic Field

• 摘要: 考虑感应磁场的影响，研究不可压缩粘性流体在伸展表面上，作稳定磁流体动力学（MHD）的驻点流动．通过相似变换，将非线性的偏微分方程，变换成为常微分方程．用打靶法数值地求解变换后的边界层方程，得到不同的磁场参数和Prandtl数Pr时的数值解．对a/c＞1和a/c＜1两种情况(其中a和c均为正值)，讨论感应磁场参数对表面摩擦因数、局部Nusselt数、速度和温度的影响，绘出变化曲线并给予讨论．
•  [1] Tzirtzilakis E E，Kafoussias N G. Biomagnetic fluid flow over a stretching sheet with non linear temperature dependent magnetization[J]. Journal of Applied Mathematics and Mechanics (ZAMP), 2003, 54(4): 551-565. [2] Tzirtzilakis E E, Tanoudis G B. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer[J]. International Journal for Numerical Methods in Heat and Fluid Flow, 2003, 13(7): 830-848 . [3] Tzirtzilakis E E, Kafoussias N G. Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet[J]. ASME Journal of Heat Transfer, 2010, 132(1): 011702-1-011702-8. [4] Al-Odat M Q, Damseh R A, Al-Azab T A. Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect[J]. International Journal of Applied Mechanics and Engineering, 2006,11(2): 289-299. [5] Tongli B, Zheng L C, Zhang X X. Multiple solutions of laminar flow in channels with a transverse magnetic field[J]. Chinese Physics Letters, 2009, 26(9): 094101-1-094101-3. [6] Hiemenz K. Die Grenzschicht an einem in den gleichfrmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder[J]. Dingler Polytech Journal, 1911, 326: 321-324. [7] Eckert E R G. Die Berechnung des Warmeubergangs in der laminaren Grenzschicht umstromter Korpe[J]. VDI Forschungsheft, 1942,416: 1-23. [8] Mahapatra T R, Gupta A S. Magnetohydrodynamic stagnation point flow towards a stretching sheet[J]. Acta Mechanica, 2001, 152(1/4): 191-196. [9] Mahapatra T R, Gupta A S. Heat tansfer in stagnation-point flow towards a stretching sheet[J]. Heat and Mass Transfer, 2002,38(6): 517-521. [10] Mahapatra T R, Gupta A S. Stagnation-point flow of a viscoelastic fluid towards a stretching surface[J]. International Journal of Non-Linear Mechanics, 2004, 39(5): 811-820. [11] Nazar R, Amin N, Filip D, Pop I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet[J]. International Journal of Engineering Science, 2004, 42(11/12): 1241-1253. [12] Ishak A, Nazar R, Pop I. Mixed convection boundary layers in the stagnation-point flow towards a stretching vertical sheet[J]. Meccanica, 2006, 41(5): 509-518. [13] Wang C Y. Stagnation slip flow and heat transfer on a moving plate[J]. Chemical Engineering Science, 2006, 61(23), 7668-7672. [14] Gorla R S R. Non-Newtonian fluid at a stagnation point in the presence of a transverse magnetic field[J]. Mechanics Research Communications, 1976, 3(1): 1-6. [15] 朱婧,郑连存,张欣欣. 具有伸展表面的驻点流动和传热问题的级数解[J].应用数学和力学，2009, 30(4): 432-442. (ZHU Jing, ZHENG Lian-cen, ZHANG Xin-xin. Analytical solution to stagnation-point flow and heat transfer over a stretching sheet based on homotopy analysis[J]. Applied Mathematics and Mechanics (English Edition), 2009,30(4): 463-474.) [16] 朱婧，郑连存，张志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动[J] 应用数学和力学，2009, 31(4): 411-419. (ZHU Jing, ZHENG Lian-cen, ZHANG Zhi-gang. Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(4): 439-448.) [17] Kumari M, Takhar H S, Nath G. MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux[J]. Wrme-und Stoffübertr, 1990, 25(6): 331-336. [18] Takhar H S, Kumari M, Nath G. Unsteady free convection flow under the influence of a magnetic field[J]. Archive of Applied Mechanics, 1993, 63(4/5): 313-321. [19] Cowling T G. Magnetohydrodynamics[M]. New York : Interscience Publication, 1957. [20] Davies T V. The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infinite flat plate—Ⅰ: uniform conditions at infinity[J]. Proc Roy Soc A, 1962, 273(1355): 496-508. [21] Hartmann J. Theory of the laminar flow of an electrically conducting liquid in a homogenous magnetic field[J]. Math-Fys Medd, 1937,15(6): 1-28. [22] Meade D B, Haran B S, White R E. The shooting technique for the solution of two-point boundary value problems[J]. Maple Tech, 1996, 3(1): 85-93.

##### 计量
• 文章访问数:  1224
• HTML全文浏览量:  51
• PDF下载量:  872
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-09-27
• 修回日期:  2011-01-24
• 刊出日期:  2011-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈