留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

血管抑素与内皮抑素作用下抗血管生成治疗对肿瘤微血管网与微环境影响的模拟研究

吴洁 丁祖荣 蔡彦 许世雄 赵改平 龙泉

吴洁, 丁祖荣, 蔡彦, 许世雄, 赵改平, 龙泉. 血管抑素与内皮抑素作用下抗血管生成治疗对肿瘤微血管网与微环境影响的模拟研究[J]. 应用数学和力学, 2011, 32(4): 417-427. doi: 10.3879/j.issn.1000-0887.2011.04.005
引用本文: 吴洁, 丁祖荣, 蔡彦, 许世雄, 赵改平, 龙泉. 血管抑素与内皮抑素作用下抗血管生成治疗对肿瘤微血管网与微环境影响的模拟研究[J]. 应用数学和力学, 2011, 32(4): 417-427. doi: 10.3879/j.issn.1000-0887.2011.04.005
WU Jie, DING Zu-rong, CAI Yan, XU Shi-xiong, ZHAO Gai-ping, LONG Quan. Simulation of Tumor Microvasculature and Microenvironment Response to Anti-Angiogenic Treatment by Angiostatin and Endostatin[J]. Applied Mathematics and Mechanics, 2011, 32(4): 417-427. doi: 10.3879/j.issn.1000-0887.2011.04.005
Citation: WU Jie, DING Zu-rong, CAI Yan, XU Shi-xiong, ZHAO Gai-ping, LONG Quan. Simulation of Tumor Microvasculature and Microenvironment Response to Anti-Angiogenic Treatment by Angiostatin and Endostatin[J]. Applied Mathematics and Mechanics, 2011, 32(4): 417-427. doi: 10.3879/j.issn.1000-0887.2011.04.005

血管抑素与内皮抑素作用下抗血管生成治疗对肿瘤微血管网与微环境影响的模拟研究

doi: 10.3879/j.issn.1000-0887.2011.04.005
基金项目: 国家自然科学基金资助项目(10772051);中国博士后基金资助项目(20100470702)
详细信息
    作者简介:

    吴洁(1982- ),女,上海人,博士(联系人.Tel:+86-21-34204313;E-mail:janny-wujie@yahoo.com.cn).

  • 中图分类号: R318.01; TB115

Simulation of Tumor Microvasculature and Microenvironment Response to Anti-Angiogenic Treatment by Angiostatin and Endostatin

  • 摘要: 基于对血管抑素和内皮抑素作用下肿瘤抗血管生成及血液动力学的数学建模与数值模拟,研究抗血管生成治疗对肿瘤微血管网的影响及对微环境流动的改善作用.研究表明,抗血管生成治疗后:1) 新生血管的生长与分叉受到抑制,血管化程度降低;2) 血液灌注量减少,间质高压得到缓解,渗入宿主组织的间质液减少,负向跨壁流量大幅下降.
  • [1] Jain R K, Tong R T, Munn L L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model[J]. Cancer Res, 2007, 67(6): 2729-2735. doi: 10.1158/0008-5472.CAN-06-4102
    [2] Fukumura D, Jain R K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization[J]. Microvas Res, 2007, 74(2): 72-84. doi: 10.1016/j.mvr.2007.05.003
    [3] Huber P E, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grne H J, Debus J, Lipson K E, Abdollahi A. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy[J]. Cancer Res, 2005, 65(9): 3643-3655. doi: 10.1158/0008-5472.CAN-04-1668
    [4] Tong R T, Boucher Y, Kozin S V, Winkler F, Hicklin D J, Jain R K. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors[J]. Cancer Res, 2004, 64(11): 3731-3736. doi: 10.1158/0008-5472.CAN-04-0074
    [5] Willett C G, Boucher Y, di Tomaso E, Duda D G, Munn L L, Tong R T, Chung D C, Sahani D V, Kalva S P, Kozin S V, Mino M, Cohen K S, Scadden D T, Hartford A C, Fischman A J, Clark J W, Ryan D P, Zhu A X, Blaszkowsky L S, Chen H X, Shellito P C, Lauwers G Y, Jain R K. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer[J]. Nat Med, 2004, 10(2): 145-147. doi: 10.1038/nm988
    [6] Willett C G, Boucher Y, Duda D G, di Tomaso E, Munn L L, Tong R T, Kozin S V, Petit L, Jain R K, Chung D C, Sahani D V, Kalva S P, Cohen K S, Scadden D T, Fischman A J, Clark J W, Ryan D P, Zhu A X, Blaszkowsky L S, Shellito P C, Mino-Kenudson M, Lauwers G Y. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for Bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients[J]. J Clin Oncol, 2005, 23(31): 8136-8139. doi: 10.1200/JCO.2005.02.5635
    [7] O’Reilly M S, Holmgren L, Shing Y, Chen C, Rosenthal R A, Moses M, Lane W S, Cao Y, Sage E H, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[J]. Cell, 1994, 79(2): 315-328. doi: 10.1016/0092-8674(94)90200-3
    [8] O’Reilly M S, Boehm T, Shing Y, Fukai N, Vasios G, Lane W S, Flynn E, Birkhead J R, Olsen B R, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth[J]. Cell, 1997, 88(2): 277-285. doi: 10.1016/S0092-8674(00)81848-6
    [9] Tee D, DiStefano Ⅲ J. Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies[J]. J Cancer Res Clin Oncol, 2004, 130(1): 15-24. doi: 10.1007/s00432-003-0491-1
    [10] 赵改平, 高昊, 吴洁, 许世雄,Collins M W, LONG Quan, Knig C S, Padhani A R.抗血管生成因子Angiostatin与Endostatin作用下肿瘤血管生成的二维数值模拟[J]. 医用生物力学, 2006, 21(4): 272-279. (ZHAO Gai-ping, GAO Hao, WU Jie, XU Shi-xiong, Collins M W, LONG Quan, Knig C S, Padhani A R. 2D numerical simulation of effect anti-angiogenic factors Angiostatin and Endostatin on tumor-induced angiogenesis[J]. J Med Biomech, 2006, 21(4): 272-279. (in Chinese))
    [11] Anderson A R A, Chaplain M A J. Continuous and discrete mathematical models of tumor-induced angiogenesis[J]. Bull Math Biol, 1998, 60(5): 857-900. doi: 10.1006/bulm.1998.0042
    [12] Wu J, Xu S X, Long Q, Collins M W, Knig C S, Zhao G, Jiang Y, Padhani A R. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature[J]. J Biomech, 2008, 41(5): 996-1004. doi: 10.1016/j.jbiomech.2007.12.008
    [13] Wu J, Long Q, Xu S X, Padhani A R.Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature[J]. J Biomech, 2009, 42(6): 712-721. doi: 10.1016/j.jbiomech.2009.01.009
    [14] Baxter L T, Jain R K. Transport of fluid and macromolecules in tumors—Ⅱ: role of heterogeneous perfusion and lymphatics[J]. Microvas Res, 1990, 40(2): 246-263. doi: 10.1016/0026-2862(90)90023-K
    [15] 万若. 淋巴回流的动力[J]. 生物学教育, 1993, 9: 32. (WAN Ruo. Dynamics of lymphatic return[J]. Biology Teaching, 1993, 9: 32. (in Chinese))
    [16] Netti P A, Roberge S, Boucher Y, Baxter L T, Jain R K. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity[J]. Microvas Res, 1996, 52(1): 27-46. doi: 10.1006/mvre.1996.0041
    [17] Pries A R, Secomb T W, Gessner T, Sperandio M B, Gross J F, Gaehtgens P. Resistance to blood flow in microvessels in vivo[J]. Circulation Res, 1994, 75(5): 904-915. doi: 10.1161/01.RES.75.5.904
    [18] Pries A R, Secomb T W. Microvascular blood viscosity in vivo and the endothelial surface layer[J]. Am J Physiol Heart Circ Physiol, 2005, 289(6): H2657-H2664.
    [19] Eriksson K, Magnusson P, Dixelius J, Claesson-Welsh L, Cross M J. Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways[J]. FEBS Letters, 2003, 536(1/3): 19-24. doi: 10.1016/S0014-5793(03)00003-6
    [20] Herbst R S, Mullani N A, Davis D W, Hess K R, McConkey D J, Charnsangavej C, O'Reilly M S, Kim H W, Baker C, Roach J, Ellis L M, Rashid A, Pluda J, Bucana C, Madden T L, Tran H T, Abbruzzese J L. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin[J]. J Clin Oncol, 2002, 20(18): 3804-3814. doi: 10.1200/JCO.2002.05.102
  • 加载中
计量
  • 文章访问数:  1030
  • HTML全文浏览量:  35
  • PDF下载量:  856
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-10
  • 修回日期:  2011-02-23
  • 刊出日期:  2011-04-15

目录

    /

    返回文章
    返回