留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔压电线性理论中的唯一性定理、互易定理和特征值问题

A·K·瓦西世 V·古泊塔

A·K·瓦西世, V·古泊塔. 多孔压电线性理论中的唯一性定理、互易定理和特征值问题[J]. 应用数学和力学, 2011, 32(4): 455-469. doi: 10.3879/j.issn.1000-0887.2011.04.008
引用本文: A·K·瓦西世, V·古泊塔. 多孔压电线性理论中的唯一性定理、互易定理和特征值问题[J]. 应用数学和力学, 2011, 32(4): 455-469. doi: 10.3879/j.issn.1000-0887.2011.04.008
Anil K. Vashishth, Vishakha Gupta. Uniqueness Theorem,Theorem of Reciprocity and Eigen Value Problems in the Linear Theory of Porous Piezoelectricity[J]. Applied Mathematics and Mechanics, 2011, 32(4): 455-469. doi: 10.3879/j.issn.1000-0887.2011.04.008
Citation: Anil K. Vashishth, Vishakha Gupta. Uniqueness Theorem,Theorem of Reciprocity and Eigen Value Problems in the Linear Theory of Porous Piezoelectricity[J]. Applied Mathematics and Mechanics, 2011, 32(4): 455-469. doi: 10.3879/j.issn.1000-0887.2011.04.008

多孔压电线性理论中的唯一性定理、互易定理和特征值问题

doi: 10.3879/j.issn.1000-0887.2011.04.008
基金项目: 印度大学教育资助委员会资助项目(No.f.No.8(42)/2010(MRP/NRCB))
详细信息
  • 中图分类号: O343.7

Uniqueness Theorem,Theorem of Reciprocity and Eigen Value Problems in the Linear Theory of Porous Piezoelectricity

  • 摘要: 假定弹性场和电场为正定,在多孔压电线性理论中建立起唯一性定理和互易定理.在准静态电场近似下,证明多孔压电材料线性理论中的一般性定理.利用弹性场的正定性,唯一性定理得到证明.在与多孔压电体自由振动相联系的特征值问题的研究中,给出了简明的公式.文中还研究了有关算子的某些特性.以简明公式为基础,利用变分法和算子法,研究了由于小扰动产生的频移问题.还给出了特殊情况下的扰动分析.
  • [1] Cady W G.Piezoelectricity[M]. New York: McGraw Hill Book Company, 1946:1-405.
    [2] Mason W P. Piezoelectric Crystals and Their Application to Ultrasonics[M]. Princeton, New York: D Van Nostrand Company, Inc, 1950: 1-502.
    [3] Tiersten H F. Linear Piezoelectric Plate Vibrations[M]. New York:Plenum Press, 1969:1-212.
    [4] Mindlin R D. High frequency vibrations of piezoelectric crystal plates[J]. International Journal of Solids and Structures,1972,8(7):895-906. doi: 10.1016/0020-7683(72)90004-2
    [5] Paul H S, Natarajan K. Flexural vibration in a finite piezoelectric circular cylinder of crystal class 6 mm[J]. International Journal of Engineering Science,1994,32(8):1303-1314. doi: 10.1016/0020-7225(94)90040-X
    [6] DING Hao-jiang, GUO Yi-mu, YANG Qing-da, CHEN Wei-qiu. Free vibration of piezoelectric cylindrical shells[J]. Acta Mechanica Solida Sinica,1997,10(1):48-55.
    [7] DING Hao-jiang, XU Rong-qiao, CHEN Wei-qui. Exact solutions for free vibration of transversely isotropic piezoelectric circular plates[J]. Acta Mechanica Sinica(English Series) , 2000, 16(2): 141-147.
    [8] Sabu N. Vibrations of thin piezoelectric flexural shells: two dimensional approximation[J]. Journal of Elasticity, 2002, 68(1/3): 145-165. doi: 10.1023/A:1026074730631
    [9] Davi F. Dynamics of linear piezoelectric rods[J]. Journal of Elasticity, 1997,46(3): 181-198. doi: 10.1023/A:1007359218368
    [10] Lioubimova E, Schiavone P. Steady state vibrations of an unbounded linear piezoelectric medium[J]. Z Angew Math Phys, 2006, 57(5): 862-874. doi: 10.1007/s00033-006-0071-8
    [11] Lioubimova E, Schiavone P. Steady state vibrations for the state of generalized plane strain in a linear piezoelectric medium[J]. International Journal of Engineering Science, 2006, 44(8/9): 471-483. doi: 10.1016/j.ijengsci.2006.04.006
    [12] Yang J S, Batra R C. Free vibrations of a piezoelectric body[J]. Journal of Elasticity, 1994, 34(3): 239-254. doi: 10.1007/BF00040766
    [13] Yang J. Free vibrations of an electrostatic body under biasing fields[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005, 52: 358-364. doi: 10.1109/TUFFC.2005.1417257
    [14] Guo S. An eigen expression for piezoelectrically stiffened elastic and dielectric constants based on the static theory[J]. Acta Mechanica, 2010, 210(3/4): 345-350. doi: 10.1007/s00707-009-0223-y
    [15] Iesan D. Reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity[J]. International Journal of Engineering Science, 1990, 28(11): 1139-1149. doi: 10.1016/0020-7225(90)90113-W
    [16] Yang J S, Batra R C. Conservation laws in linear piezoelectricity[J].Engineering Fracture Mechanics, 1995, 51(6): 1041-1047. doi: 10.1016/0013-7944(94)00271-I
    [17] Craciun I A. Uniqueness theorem in the linear theory of piezoelectric micropolar thermoelasticity[J]. International Journal of Engineering Science, 1995, 33(7): 1027-1036. doi: 10.1016/0020-7225(94)00106-T
    [18] Iesan D, Quintanilla R. Some theorems in the theory of microstretch thermopiezoelectricity[J]. International Journal of Engineering Science, 2007, 45(1): 1-16. doi: 10.1016/j.ijengsci.2006.10.001
    [19] Karamany A S E. Uniqueness theorem and Hamilton’s principle in linear micropolar thermopiezoelctric/piezomagnetic continuum with two relaxation times[J]. Meccanica, 2009, 44(1): 47-59. doi: 10.1007/s11012-008-9144-4
    [20] Ciarletta M, Scalia A. Thermodynamic theory for porous piezoelectric materials[J]. Meccanica, 1993, 28(4): 303-308. doi: 10.1007/BF00987166
    [21] Hashimoto K Y, Yamaguchi M. Elastic, piezoelectric and dielectric properties of composite materials[J]. Proceeding IEEE Ultrasonics Symposium, 1986, 2: 697-702.10.1109/ULTSYM.1986.198824
    [22] Arai T, Ayusawa K, Sato H, Miyata T, Kawamura K, Kobayashi K. Properties of hydrophone with porous piezoelectric ceramics[J]. Japanese Journal of Applied Physics, 1991, 30: 2253-2255. doi: 10.1143/JJAP.30.2253
    [23] Mizumura K, Kurihara Y, Ohashi H, Kumamoto S, Okuno K. Porous piezoelectric ceramic transducer[J]. Japanese Journal of Applied Physics, 1991, 30: 2271-2273. doi: 10.1143/JJAP.30.2271
    [24] Hayashi T, Sugihara K, Okazaki K. Processing of porous 3-3 PZT ceramics using capsule-free O2 H P[J]. Japanese Journal of Applied Physics, 1991, 30: 2243-2246. doi: 10.1143/JJAP.30.2243
    [25] Xia Z, Ma S, Qui X, Wu Y, Wang F. Influence of porosity on the stability of charge and piezoelectricity for porous polytetrafluoroethylene film electrets[J]. Journal of Electrostatics, 2003, 59(1): 57-69. doi: 10.1016/S0304-3886(03)00089-5
    [26] Piazza D, Stoleriu L, Mitoseriu L, Stancu A, Galassi C. Characterization of porous PZT ceramics by first order reversal curves (FORC) diagrams[J]. Journal of the European Ceramic Society, 2006, 26(14): 2959- 2962. doi: 10.1016/j.jeurceramsoc.2006.02.026
    [27] Wang Q, Chen Q, Zhu J, Huang C, Darvell B W, Chen Z. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute[J]. Materials Chemistry and Physics, 2008, 109(2/3): 488-491. doi: 10.1016/j.matchemphys.2007.12.022
    [28] Banno H. Effects of porosity on dielectric, elastic and electromechanical properties of Pb(Zr,Ti)O3 ceramics with open pores: a theoretical approach[J]. Japanese Journal of Applied Physics, 1993, 32(9S): 4214-4217. doi: 10.1143/JJAP.32.4214
    [29] Lacour O, Lagier M, Sornette D. Effect of dynamic fluid compressibility and permeability on porous piezoelectric ceramics[J]. The Journal of the Acoustic Society of America, 1994, 96(6): 3548-3557. doi: 10.1121/1.410614
    [30] Gomez T E, Montero F. Highly coupled dielectric behavior of porous ceramics embedding a polymer[J]. Applied Physics Letters, 1996, 68(2): 263-265. doi: 10.1063/1.115657
    [31] Vashishth A K, Gupta V. Vibration of porous piezoelectric plates[J]. Journal of Sound and Vibration, 2009, 325: 781-797. doi: 10.1016/j.jsv.2009.03.034
    [32] Vashishth A K, Gupta V. Wave propagation in transversely isotropic porous piezoelectric materials[J]. International Journal of Solids and Structures, 2009, 46(20): 3620-3632. doi: 10.1016/j.ijsolstr.2009.06.011
  • 加载中
计量
  • 文章访问数:  1226
  • HTML全文浏览量:  33
  • PDF下载量:  759
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-20
  • 修回日期:  2011-01-19
  • 刊出日期:  2011-04-15

目录

    /

    返回文章
    返回