## 留言板

A·M·任库尔. 变厚度非均匀粘弹性复合圆柱体的旋转应力[J]. 应用数学和力学, 2011, 32(4): 483-496. doi: 10.3879/j.issn.1000-0887.2011.04.010
 引用本文: A·M·任库尔. 变厚度非均匀粘弹性复合圆柱体的旋转应力[J]. 应用数学和力学, 2011, 32(4): 483-496.
A. M. Zenkour. Stresses in a Rotating Heterogeneous Viscoelastic Composite Cylinder With Variable Thickness[J]. Applied Mathematics and Mechanics, 2011, 32(4): 483-496. doi: 10.3879/j.issn.1000-0887.2011.04.010
 Citation: A. M. Zenkour. Stresses in a Rotating Heterogeneous Viscoelastic Composite Cylinder With Variable Thickness[J]. Applied Mathematics and Mechanics, 2011, 32(4): 483-496.

• 中图分类号: O343

## Stresses in a Rotating Heterogeneous Viscoelastic Composite Cylinder With Variable Thickness

• 摘要: 在平面应变的假设下，给出了两个复合弹性圆柱体旋转时的解析解．外柱是由厚度按公式变化的正交各向异性材料所组成，它包裹着一个等厚度纤维增强粘弹性均匀各向同性的实心圆柱体．外圆柱体的厚度和弹性性质按半径方向的幂函数变化．应用边界和连续条件，确定复合圆柱体旋转时的径向位移和应力，应用等效模量和Illyushin逼近法，得到问题的粘弹性解．讨论了各向异性、厚度变化、本构参数以及时间参数，对径向位移和应力的影响．
•  [1] Landau L D, Lifshitz E M. Theory of Elasticity[M]. Oxford: Pergamon Press, 1986. [2] Senitskii Y E. Stress state of a rotating inhomogeneous anisotropic cylinder of variable density[J]. Prik Mekhan, 1992, 28(5): 28-35. [3] Vasilenko A T, Sudavtsova G K. Elastic equilibrium of circumferentially inhomogeneous orthotropic cylindrical shells of arbitrary thickness[J]. Int Appl Mech, 2001, 37(8): 1046-1054. [4] Liew K M, Kitipornchai S, Zhang X Z, Lim C W. Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders[J]. Int J Solids Struct, 2003, 40(10): 2355-2380. [5] Oral A, Anlas G. Effects of radially varying moduli on stress distribution of nonhomogeneous anisotropic cylindrical bodies[J]. Int J Solids Struct, 2005, 42(20): 5568-5588. [6] Tutuncu N. Stresses in thick-walled FGM cylinder with exponentially-varying properties[J]. Eng Struct, 2007, 29(9): 2032-2035. [7] Chandrashekhara K, Gopalakrishnan P. Analysis of an orthotropic cylindricall shell having a transversely isotropic core subjected to axisymmetric load[J]. Thin-Walled Struct, 1986, 4(3): 223-237. [8] Zenkour A M. Rotating variable-thickness orthotropic cylinder containing a solid core of uniform-thickness[J]. Arch Apl Mech, 2006, 76(1/2): 89-102. [9] Zenkour A M. Stresses in cross-ply laminated circular cylinders of axially variable thickness[J]. Acta Mech, 2006, 187(1): 85-102. [10] Allam M N M, Zenkour A M, Elazab E R. On the rotating inhomogeneous elastic cylinders of variable-thickness and density[J]. J Appl Math Infor Sci, 2008: 2(3): 237-257. [11] Shinozuka M, Spillers W R. Axisymmetric reinforced viscoelastic cylindricall shell[J]. Int J Mech Sci, 1966, 8(1): 1-12. [12] Ting E C, Tuan J L. Effect of cyclic internal pressure on the temperature distribution in a viscoelastic cylinder[J]. Int J Mech Sci, 1973, 15(11): 861-871. [13] Feng W W, Hung T, Chang G. Extension and torsion of hyperviscoelastic cylinders[J]. Int J Non-Linear Mech, 1992, 27(3): 329-335. [14] Karnaukhov V G, Senchenkov I K. Thermomechanical behavior of a viscoelastic finite circular cylinder under harmonic deformations[J]. J Eng Math, 2003, 46(3/4): 299-312. [15] Bland D. The Linear Theory of Viscoelasticity[M]. New York: Pergamon Press, 1960. [16] Illyushin A A, Pobedria B E. Foundations of Mathematical Theory of Thermo Viscoelasticity[M]. Moscow: Nauka, 1970. [17] Allam M N M, Appleby P G. On the plane deformation of fiber-reinforced viscoelastic plates[J]. Appl Math Modell, 1985, 9(5): 341-346. [18] Allam M N M, Appleby P G. On the stress concentrations around a circular hole in a fiber-reinforced viscoelastic plate[J]. Res Mech, 1986, 19(2): 113-126. [19] Allam M N M, Zenkour A M. Bending response of a fiber-reinforced viscoelastic arched bridge model[J]. Appl Math Modell, 2003, 27(3): 233-248. [20] Zenkour A M, Allam M N M. Stresses around filled and unfilled circular holes in a fiber-reinforced viscoelastic plate under bending[J]. Mech Adv Mater, 2005, 12(6): 379-389. [21] Zenkour A M, Allam M N M. On the rotating fiber-reinforced viscoelastic composite solid and annular disks of variable thickness[J]. Int J Comput Methods Eng Sci Mech, 2006, 7(1): 21-31. [22] Abramowitz M, Stegun A I. Handbook of Mathematical Functions[M]. 5th Printing. Washington DC, USA: US Government Printing Office, 1966. [23] Bogdanovich A E, Pastore C M. Mechanics of Textile and Laminated Composites With Applications to Structural Analysis[M]. New York: Chapman and Hall, 1996. [24] Pobedria B E. Structural anisotropy in viscoelasticity[J]. Polym Mech, 1976, 12(4): 557-561. [25] Zenkour A M. Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory[J]. Acta Mech, 2004, 171(3/4): 171-187. [26] Zenkour A M. Buckling of fiber-reinforced viscoelastic composite plates using various plate theories[J]. J Eng Math, 2004, 50(1): 75-93. [27] 任库尔 A M, 伊莉莎白 K A, 玛沙特 D S. 功能梯度空心及实心圆柱体旋转时的弹性及粘弹性解[J]. 应用数学和力学，2008, 29(12): 1457-1471. (Zenkour A M, Elsibai K A, Mashat D S. Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(12): 1601-1616.)

##### 计量
• 文章访问数:  1064
• HTML全文浏览量:  11
• PDF下载量:  713
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-05-02
• 修回日期:  2010-11-25
• 刊出日期:  2011-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈