留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维多项式本征应变边界积分方程及其数值验证

马杭 郭钊 秦庆华

马杭, 郭钊, 秦庆华. 二维多项式本征应变边界积分方程及其数值验证[J]. 应用数学和力学, 2011, 32(5): 522-532. doi: 10.3879/j.issn.1000-0887.2011.05.002
引用本文: 马杭, 郭钊, 秦庆华. 二维多项式本征应变边界积分方程及其数值验证[J]. 应用数学和力学, 2011, 32(5): 522-532. doi: 10.3879/j.issn.1000-0887.2011.05.002
MA Hang, GUO Zhao, QIN Qing-hua. Two-Dimensional Polynomial Eigenstrain Formulation of Boundary Integral Equation With Numerical Verification[J]. Applied Mathematics and Mechanics, 2011, 32(5): 522-532. doi: 10.3879/j.issn.1000-0887.2011.05.002
Citation: MA Hang, GUO Zhao, QIN Qing-hua. Two-Dimensional Polynomial Eigenstrain Formulation of Boundary Integral Equation With Numerical Verification[J]. Applied Mathematics and Mechanics, 2011, 32(5): 522-532. doi: 10.3879/j.issn.1000-0887.2011.05.002

二维多项式本征应变边界积分方程及其数值验证

doi: 10.3879/j.issn.1000-0887.2011.05.002
基金项目: 国家自然科学基金资助项目(10972131)
详细信息
    作者简介:

    马杭(1951- ),男,山东青州人,教授,博士,博士生导师(联系人.E-mail:hangma@staff.shu.edu.cn).

  • 中图分类号: O241

Two-Dimensional Polynomial Eigenstrain Formulation of Boundary Integral Equation With Numerical Verification

  • 摘要: 针对弹性介质中的椭圆形异质体,给出了低阶多项式分布的二维本征应变边界积分方程和相应的Eshelby张量的定义.以边界元分域法为参照,利用含有单个异质体的弹性介质对提出的计算模型和算法进行了数值验证.结果表明该算法取得较大的改进,其计算效率高于传统的边界元法,计算精度则高于采用常数本征应变的计算模型.
  • [1] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems[J]. Proceedings of the Royal Society of London A, 1957, 241(1226): 376-396. doi: 10.1098/rspa.1957.0133
    [2] Eshelby J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society of London A, 1959, 252(1271): 561-569. doi: 10.1098/rspa.1959.0173
    [3] Mura T, Shodja H M, Hirose Y. Inclusion problems (part 3)[J]. Applied Mechanics Review, 1996, 49(10S): S118-S127.
    [4] Federico S, Grilloc A, Herzog W. A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(10): 2309-2327. doi: 10.1016/j.jmps.2004.03.010
    [5] Cohen I. Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 2167-2183. doi: 10.1016/j.jmps.2004.02.008
    [6] Franciosi P, Lormand G. Using the radon transform to solve inclusion problems in elasticity[J]. International Journal of Solids and Structures, 2004, 41(3/4): 585-606. doi: 10.1016/j.ijsolstr.2003.10.011
    [7] Feng X Q, Mai Y W, Qin Q H. A micromechanical model for interpenetrating multiphase composites[J]. Computational Material Science, 2003, 28(3/4): 486-493. doi: 10.1016/j.commatsci.2003.06.005
    [8] Kompis V, Kompis M, Kaukic M. Method of continuous dipoles for modeling of materials reinforced by short micro-fibers[J]. Engineering Analysis With Boundary Elements, 2007, 31(5): 416-424. doi: 10.1016/j.enganabound.2006.10.008
    [9] Doghri I, Tinel L. Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(13/16): 1387-1406. doi: 10.1016/j.cma.2005.05.041
    [10] Kakavas P A, Kontoni D N. Numerical investigation of the stress field of particulate reinforced polymeric composites subjected to tension[J]. International Journal for Numerical Methods in Engineering, 2006, 65(7): 1145-1164. doi: 10.1002/nme.1483
    [11] Kanaun S K, Kochekseraii S B. A numerical method for the solution of thermo- and electro-static problems for a medium with isolated inclusions[J]. Journal of Computational Physics, 2003, 192(2): 471-493. doi: 10.1016/j.jcp.2003.07.010
    [12] Lee J, Choi S, Mal A. Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique[J]. International Journal of Solids and Structures, 2001, 38(16): 2789-2802. doi: 10.1016/S0020-7683(00)00182-7
    [13] Dong C Y, Cheung Y K, Lo S H. A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(31): 3411-3421. doi: 10.1016/S0045-7825(02)00261-X
    [14] Dong C Y, Lee K Y. Boundary element analysis of infinite anisotropic elastic medium containing inclusions and cracks[J]. Engineering Analysis With Boundary Elements, 2005, 29(6): 562-569. doi: 10.1016/j.enganabound.2004.12.011
    [15] Dong C Y, Lee K Y. Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method[J]. International Journal of Solids and Structures, 2006, 43(25/26): 7919-7938. doi: 10.1016/j.ijsolstr.2006.04.009
    [16] Liu Y J, Nishimura N, Tanahashi T, Chen X L, Munakata H. A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model[J]. ASME Journal of Applied Mechanics, 2005, 72(1): 115-128. doi: 10.1115/1.1825436
    [17] Ma H, Deng H L. Nondestructive determination of welding residual stresses by boundary element method[J]. Advances in Engineering Software, 1998, 29(2): 89-95. doi: 10.1016/S0965-9978(98)00051-9
    [18] Nakasone Y, Nishiyama H, Nojiri T. Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes[J]. Materials Science and Engineering A, 2000, 285(1/2): 229-238. doi: 10.1016/S0921-5093(00)00637-7
    [19] Qin Q H. Nonlinear analysis of Reissner plates on an elastic foundation by the BEM[J]. International Journal of Solids and Structures, 1993, 30(22): 3101-3111. doi: 10.1016/0020-7683(93)90141-S
    [20] Greengard L F, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1997, 73(2): 325-348.
    [21] Ma H, Yan C, Qin Q H. Eigenstrain formulation of boundary integral equations for modeling particle-reinforced composites[J]. Engineering Analysis with Boundary Elements, 2009, 33(3): 410-419. doi: 10.1016/j.enganabound.2008.06.002
    [22] 马杭,夏利伟,秦庆华. 短纤维复合材料的本征应变边界积分方程计算模型[J]. 应用数学和力学, 29(6): 687-695.(MA Hang, XIA Li-wei, QIN Qing-hua. Computational model for short-fiber composites with eigen-strain formulation of boundary integral equations[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(6): 757-767.) doi: 10.1007/s10483-008-0607-4
    [23] Rahman M. The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain[J]. ASME Journal of Applied Mechanics, 2002, 69(5): 593-601. doi: 10.1115/1.1491270
    [24] Nie G H, Guo L, Chan C K, Shin F G. Non-uniform eigenstrain induced stress field in an elliptic inhomogeneity embedded in orthotropic media with complex roots[J]. International Journal of Solids and Structures, 2007, 44(10): 3575-3593. doi: 10.1016/j.ijsolstr.2006.10.005
    [25] Ma H, Kamiya N, Xu S Q. Complete polynomial expansion of domain variables at boundary for two-dimensional elasto-plastic problems[J]. Engineering Analysis With Boundary Elements, 1998, 21(3): 271-275. doi: 10.1016/S0955-7997(98)00017-4
    [26] Ma H, Qin Q H. Solving potential problems by a boundary-type meshless method—the boundary point method based on BIE[J]. Engineering Analysis With Boundary Elements, 2007, 31(9): 749-761. doi: 10.1016/j.enganabound.2007.03.001
    [27] Ma H, Zhou J, Qin Q H. Boundary point method for linear elasticity using constant and quadratic moving elements[J]. Advances in Engineering Software, 2010, 41(3): 480-488. doi: 10.1016/j.advengsoft.2009.10.006
  • 加载中
计量
  • 文章访问数:  1577
  • HTML全文浏览量:  183
  • PDF下载量:  866
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-04
  • 修回日期:  2011-03-19
  • 刊出日期:  2011-05-15

目录

    /

    返回文章
    返回