留言板

 引用本文: 郭俊宏, 袁泽帅, 卢子兴. 幂函数型曲线裂纹平面问题的一般解[J]. 应用数学和力学, 2011, 32(5): 533-540.
GUO Jun-hong, YUAN Ze-shuai, LU Zi-xing. General Solutions of Plane Problem for Power Function Curved Cracks[J]. Applied Mathematics and Mechanics, 2011, 32(5): 533-540. doi: 10.3879/j.issn.1000-0887.2011.05.003
 Citation: GUO Jun-hong, YUAN Ze-shuai, LU Zi-xing. General Solutions of Plane Problem for Power Function Curved Cracks[J]. Applied Mathematics and Mechanics, 2011, 32(5): 533-540.

幂函数型曲线裂纹平面问题的一般解

doi: 10.3879/j.issn.1000-0887.2011.05.003

作者简介:郭俊宏(1981- ),男,内蒙古乌兰察布人,博士生(E-mail:guojunhong@ase.buaa.edu.cn);卢子兴(1960- ),男,河北枣强人,教授,博士生导师(联系人.Tel:+86-10-82317507;Fax:+86-10-82328501;E-mail:luzixing@buaa.edu.cn).
• 中图分类号: O346.1

General Solutions of Plane Problem for Power Function Curved Cracks

• 摘要: 通过构造一个新的、精确的和通用的保角映射，利用Muskhelishvili复势法研究了任意自然数次幂的幂函数型曲线裂纹的平面弹性问题，给出了远处受单向拉伸载荷下裂纹尖端Ⅰ型和Ⅱ型应力强度因子的一般解．当幂次取不同的自然数时，可以退化为若干已有的结果．通过数值算例，讨论了幂函数型曲线裂纹的系数、幂次及在x轴上的投影长度对Ⅰ型和Ⅱ型应力强度因子的影响规律．
•  [1] SHEN Da-wei, FAN Tian-you. Exact solutions of two semi-infinite collinear cracks in a strip[J]. Engineering Fracture Mechanics, 2003, 70(6): 813-822. [2] Muskhelishvili N I. Some Basic Problems of Mathematical Theory of Elasticity[M]. Gorningen, Holland: P Noordhoff, 1975. [3] YAN Xiang-qiao. A numerical analysis of cracks emanating from an elliptical hole in a 2-D elasticity plate[J]. European Journal of Mechanics A/Solids, 2006, 25(1): 142-153. [4] 郭俊宏, 刘官厅. 带双裂纹的椭圆孔口问题的应力分析[J].力学学报, 2007, 39(5): 699-703.（GUO Jun-hong，LIU Guan-ting. Stress analysis for elliptical hole with two straight cracks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 699-703. (in Chinese)） [5] Abdelmoula R, Semani K, Li J. Analysis of cracks originating at the boundary of a circular hole in an infinite plate by using a new conformal mapping approach[J]. Applied Mathematics and Computation, 2007, 188(2): 1891-1896. [6] CHEN Yi-zhou. Stress intensity factors for curved and kinked cracks in plane extension[J]. Theoretical and Applied Fracture Mechanics, 1999, 31(3): 223-232. [7] 胡元太，赵兴华. 沿抛物线分布的各向异性曲线裂纹问题[J]. 应用数学和力学，1995, 16（2）：107-115.(HU Yuan-tai, ZHAO Xing-hua. Curve crack lying along a parabolic curve in anisotropic body[J]. Applied Mathematics and Mechanics（English Edition), 1995, 16(2): 115-124.） [8] 魏雪霞, 董健. 含轴对称抛物线曲裂纹平面弹性问题的解析解[J]. 北京理工大学学报, 2004, 24(5): 380-382.（WEI Xue-xia，DONG Jian. An analytical solution for the elastic plane problem with a symmetric parabolic crack[J]. Transactions of Beijing Institute of Technology, 2004, 24(5): 380-382. (in Chinese)） [9] 郭怀民, 刘官厅, 皮建东. 若干含幂函数类对称曲线裂纹平面弹性问题的解析解[J]. 内蒙古师范大学学报(自然科学汉文版), 2007, 36(5): 533-536.(GOU Huai-min, LIU Guan-ting, PI Jian-dong. Analytical solutions for the elastic plane problem with symmetric power function cracks[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2007, 36(5): 533-536. (in Chinese)) [10] 范天佑. 断裂理论基础[M]. 北京：科学出版社，2003. (FAN Tian-you. Foundation of Fracture Theory[M]. Beijing: Science Press, 2003. (in Chinese))
计量
• 文章访问数:  1973
• HTML全文浏览量:  129
• PDF下载量:  945
• 被引次数: 0
出版历程
• 收稿日期:  2010-12-09
• 修回日期:  2011-03-15
• 刊出日期:  2011-05-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈