留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场对液体-微伸缩固体介面波传播的影响

B·辛格

B·辛格. 磁场对液体-微伸缩固体介面波传播的影响[J]. 应用数学和力学, 2011, 32(5): 563-569. doi: 10.3879/j.issn.1000-0887.2011.05.006
引用本文: B·辛格. 磁场对液体-微伸缩固体介面波传播的影响[J]. 应用数学和力学, 2011, 32(5): 563-569. doi: 10.3879/j.issn.1000-0887.2011.05.006
Baljeet Singh. Influence of Magnetic Field on Wave Propagation at Liquid-Microstretch Solid Interface[J]. Applied Mathematics and Mechanics, 2011, 32(5): 563-569. doi: 10.3879/j.issn.1000-0887.2011.05.006
Citation: Baljeet Singh. Influence of Magnetic Field on Wave Propagation at Liquid-Microstretch Solid Interface[J]. Applied Mathematics and Mechanics, 2011, 32(5): 563-569. doi: 10.3879/j.issn.1000-0887.2011.05.006

磁场对液体-微伸缩固体介面波传播的影响

doi: 10.3879/j.issn.1000-0887.2011.05.006
详细信息
  • 中图分类号: O347.4+4

Influence of Magnetic Field on Wave Propagation at Liquid-Microstretch Solid Interface

  • 摘要: 在一个传播理想的非粘性液体半空间,和一个传播理想的微伸缩弹性固体半空间之间,研究介面处纵波的反射和透射.在两个半空间中,满足介面处必需的边界条件下,得到控制方程的适当解,是一组以不同反射和透射波振幅比表示的5个非齐次方程.以水和铝-环氧树脂合成材料介面为实际例子,用Gauss消除法的Fortran程序求解方程组.考虑存在和不存在外加横向磁场两种情况,在某些入射角范围内,计算振幅比的数值解.最后用图形给出横向磁场对不同反射和透射波振幅比的影响.
  • [1] Eringen A C. Micropolar elastic solids with stretch[J]. An Kitabevi Matbaasi, 1971,(24):1-18.
    [2] Eringen A C. Theory of microstretch elastic solids[J]. International Journal of Engineering Science, 1990, 28(12): 1291-1301. doi: 10.1016/0020-7225(90)90076-U
    [3] Eringen A C. Microcontinuum Field Theories—Ⅰ:Foundations and Solids[M]. New York: Springer-Verlag, Inc, 1999.
    [4] Pabst W. Micropolar materials[J]. Ceramics -Silik, 2005, 49(3):170-180.
    [5] Parfitt V R, Eringen A C. Reflection of plane waves from the flat boundary of a micropolar elastic half-space[J]. Journal of Acoustical Society of America, 1969, 45(5):1258-1272. doi: 10.1121/1.1911598
    [6] Singh B. Reflection of plane waves from free surface of a microstretch elastic solid[J]. Proceeding of Indian Academy of Sciences (Earth and Planetary Science),2002, 111(1): 29-37.
    [7] Tomar S K, Garg M. Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces[J]. International Journal of Engineering Science, 2005, 43(1/2):139-169. doi: 10.1016/j.ijengsci.2004.08.006
    [8] Singh D, Tomar S K. Rayleigh Lamb waves in a microstretch elastic plate cladded with liquid layers[J]. Journal of Sound and Vibration, 2007, 302(1/2):313-331. doi: 10.1016/j.jsv.2006.12.002
    [9] Singh B. Reflection and refraction of microstretch elastic waves at a liquid-solid interface in the presence of magnetic field[J]. Proceeding of National Academy of Sciences (India) A, 2002, 72(2):95-108.
    [10] Kaliski S. Attenuation of surface waves between perfectly conducting fluid and solid in a magnetic field normal to the contact surface[J]. Proceeding of Vibrational Problems, 1963, 4 :375.
    [11] Kaliski S, Nowacki W. International Union of Theoretical and Applied Mechanics[M]. Providence:Brown University, 1963.
    [12] Gauthier R D. Experimental investigation on micropolar media[C]Brulin O, Hsieh R K T.Mechanics of Micropolar Media. Singapore:World Scientific, 1982.
  • 加载中
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  142
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-19
  • 修回日期:  2011-03-09
  • 刊出日期:  2011-05-15

目录

    /

    返回文章
    返回