留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Burgers流体中电渗流动的精确解

T·哈亚特 S·阿夫扎尔 A·亨迪

T·哈亚特, S·阿夫扎尔, A·亨迪. 广义Burgers流体中电渗流动的精确解[J]. 应用数学和力学, 2011, 32(9): 1046-1053. doi: 10.3879/j.issn.1000-0887.2011.09.004
引用本文: T·哈亚特, S·阿夫扎尔, A·亨迪. 广义Burgers流体中电渗流动的精确解[J]. 应用数学和力学, 2011, 32(9): 1046-1053. doi: 10.3879/j.issn.1000-0887.2011.09.004
Tasawar Hayat, Saira Afzal, Awatif Hendi. Exact Solution of Electroosmotic Flow in a Generalized Burgers’ Fluid[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1046-1053. doi: 10.3879/j.issn.1000-0887.2011.09.004
Citation: Tasawar Hayat, Saira Afzal, Awatif Hendi. Exact Solution of Electroosmotic Flow in a Generalized Burgers’ Fluid[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1046-1053. doi: 10.3879/j.issn.1000-0887.2011.09.004

广义Burgers流体中电渗流动的精确解

doi: 10.3879/j.issn.1000-0887.2011.09.004
详细信息
  • 中图分类号: O357

Exact Solution of Electroosmotic Flow in a Generalized Burgers’ Fluid

  • 摘要: 就微型平行板间的非Newton流体,给出了其随时间周期电渗流动的精确解.在数学公式化中,利用了广义Burgers流体的构成方程.按Fourier变换方法求解了所得到的问题.最后,用图形画出并讨论了所关注参数的不同变化.
  • [1] Jain A, Jensen M K. Analytical modelling of electrokinetic effects on flow and heat transfer in microchannels[J]. Int J Heat and Mass Transfer, 2007, 50(25/26): 5161-5167. doi: 10.1016/j.ijheatmasstransfer.2007.07.005
    [2] Chen X Y, Toh K C, Chai J C, Yang C. Developing pressure driven liquid flow in microchannels under electrokinetic effect[J]. Int J Eng Sci, 2004, 42(5/6): 609-622. doi: 10.1016/j.ijengsci.2003.07.008
    [3] Ngoma G D, Erchiqui F. Heat flux and slip effects on liquid flow in a microchannel[J]. Int J Therm Sci, 2007, 46(11): 1076-1083. doi: 10.1016/j.ijthermalsci.2007.02.001
    [4] Zhang Y, Wong T N, Yang C, Ooi K T. Electroosmotic flow in irregular shape microchannels[J]. Int J Engng Sci, 2005, 43(19/20): 1450-1463. doi: 10.1016/j.ijengsci.2005.05.017
    [5] Duan Z, Muzychka Y S. Slip flows in elliptical microchannels[J]. Int J Therm Sci, 2007, 46: 1104-1111. doi: 10.1016/j.ijthermalsci.2007.01.026
    [6] Dutta P, Beskok A. Analytical solution of time periodic electroosmotic flows: analogies to Stokes’ second problem[J]. Anal Chem, 2001, 73(21): 5097-5102. doi: 10.1021/ac015546y
    [7] Wang X, Wu J. Flow behavior of periodical electroosmosis in microchannel for biochips[J]. J Coll Int Sci, 2006, 293(2): 483-488. doi: 10.1016/j.jcis.2005.06.080
    [8] Hayat T, Khan S B, Khan M. Exact solution for rotating flows of generalized Burgers’ fluid in a porous space[J]. Appl Math Modelling, 2008, 32(5): 749-760. doi: 10.1016/j.apm.2007.02.011
    [9] Wang S W, Tan W C. Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below[J]. Phys Lett A, 2008, 372(17): 3046-3050. doi: 10.1016/j.physleta.2008.01.024
    [10] Jamil M, Fetecau C. Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary[J]. Nonlinear Analysis: Real World Appl, 2010, 11(5): 4302-4311. doi: 10.1016/j.nonrwa.2010.05.016
    [11] Das S, Chakraborty S. Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid[J]. Anal Chim Acta, 2006, 559(1): 15-24. doi: 10.1016/j.aca.2005.11.046
    [12] Akgül M B, Pakdemirli M. Analytical and numerical solution of electro-osmotical driven flows of a third grade fluid between micro-parallel plates[J]. Int J Non-Linear Mech, 2008, 43(9): 985-992. doi: 10.1016/j.ijnonlinmec.2008.07.008
    [13] Marcos, Ooi K T, Yang C, Chai J C, Wong T N. Developing electroosmotic flow in closed-end micro-channel[J]. Int J Eng Sci, 2005, 43(17/18): 1349-1362. doi: 10.1016/j.ijengsci.2005.05.015
    [14] Tang G H, Li X F, He Y L, Tao W Q. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. J Non-Newtonian Fluid Mech, 2009, 157(1/2): 133-137. doi: 10.1016/j.jnnfm.2008.11.002
  • 加载中
计量
  • 文章访问数:  951
  • HTML全文浏览量:  23
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-20
  • 修回日期:  2011-06-06
  • 刊出日期:  2011-09-15

目录

    /

    返回文章
    返回