留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hall电流对表面热通量均匀的竖直可渗透平板上MHD自然对流的影响

L·K·萨哈 S·西提卡 M·A·侯赛因

L·K·萨哈, S·西提卡, M·A·侯赛因. Hall电流对表面热通量均匀的竖直可渗透平板上MHD自然对流的影响[J]. 应用数学和力学, 2011, 32(9): 1054-1070. doi: 10.3879/j.issn.1000-0887.2011.09.005
引用本文: L·K·萨哈, S·西提卡, M·A·侯赛因. Hall电流对表面热通量均匀的竖直可渗透平板上MHD自然对流的影响[J]. 应用数学和力学, 2011, 32(9): 1054-1070. doi: 10.3879/j.issn.1000-0887.2011.09.005
L. K. Saha, S. Siddiqa, M. A. Hossain. Effect of Hall Current on the MHD Natural Convection Flow From a Vertical Permeable Flat Plate With Uniform Surface Heat Flux[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1054-1070. doi: 10.3879/j.issn.1000-0887.2011.09.005
Citation: L. K. Saha, S. Siddiqa, M. A. Hossain. Effect of Hall Current on the MHD Natural Convection Flow From a Vertical Permeable Flat Plate With Uniform Surface Heat Flux[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1054-1070. doi: 10.3879/j.issn.1000-0887.2011.09.005

Hall电流对表面热通量均匀的竖直可渗透平板上MHD自然对流的影响

doi: 10.3879/j.issn.1000-0887.2011.09.005
详细信息
  • 中图分类号: O361;O241.4

Effect of Hall Current on the MHD Natural Convection Flow From a Vertical Permeable Flat Plate With Uniform Surface Heat Flux

  • 摘要: 在横向磁场作用下,研究Hall电流对竖直可渗透平板上MHD自然对流的影响,平板具有均匀的热通量.和外部磁场相比,假设感应磁场可以忽略不计.利用自由变量公式化(FVF)和流函数公式化(SFF),将边界层方程简化为适当的形式.对局部蒸发系数ζ的整个取值范围,由FVF得到的抛物型方程,用简明的有限差分法进行数值积分;另一方面,由SFF得到的非相似方程,采用局部非相似法求解.有些区域,如局部蒸发系数ζ值足够大或足够小时,用正规的摄动法求解.对低值Prandtl数Pr,例如Pr=0.005,0.01,0.05时,用图形表示磁场参数M和Hall参数m,对局部表面摩擦因数和局部Nusselt数的影响.最后对不同的局部蒸发系数ζ值,给出流体的速度和温度分布.
  • [1] Sato H. The Hall effect in the viscous flow of ionized gas between two parallel plates under transverse magnetic field[J]. J Phys Soc Japan, 1961, 16: 1427-1433. doi: 10.1143/JPSJ.16.1427
    [2] Yamanishi T. Hall effect in the viscous flow of ionized gas through straight channels[C]17th Annual Meeting of Phys Soc Japan, 1962,5: 29.
    [3] Sherman A, Sutton G W. Magnetohydrodynamics[M]. Illinois: Northwestern University Press, 1961.
    [4] Katagiri M. The effect of Hall currents on the magnetohydrodynamic boundary layer flow past a semi-infinite flat plate[J]. J Phys Soc Japan, 1969, 27: 1051-1059. doi: 10.1143/JPSJ.27.1051
    [5] Pop I,Watanabe T. Hall effect on magnetohydrodynamic free convection about a semi-infinite vertical flat plate[J]. Int J Eng Sci, 1994, 32(2): 1903-1911. doi: 10.1016/0020-7225(94)90087-6
    [6] Aboeldahab M E, Elbarbary M E. Hall current effect on magnetohydrodynamic free convection flow past a semi-infinite plate with mass transfer[J]. Int J Eng Sci, 2001, 39(14): 1641-1652. doi: 10.1016/S0020-7225(01)00020-9
    [7] Eichhorn R. The effect of mass transfer on free convection[J]. ASME J Heat Transfer, 1960, 82: 260-263. doi: 10.1115/1.3679928
    [8] Vedhanayagam M, Altenkirch R A, Echhorn R A. Transformation of the boundary layer equation for free convection flow past a vertical flat plate with arbitrary blowing and wall temperature variation[J]. Int J Heat Mass Transfer, 1980, 23: 1236-1288.
    [9] Lin H T, Yu W S. Free convection on horizontal plate with blowing and suction[J]. ASME J Heat Transfer, 1988, 110(3): 793-796. doi: 10.1115/1.3250564
    [10] Hossain M A, Alam K C A, Rees D A S. MHD free and forced convection boundary layer flow along a vertical porous plate[J]. Appl Mech Engrg, 1997, 2(1): 33-51.
    [11] Saha L K, Hossain M A, Gorla R S R. Effect of Hall current on the MHD laminar natural convection flow from a vertical permeable flat plate with uniform surface temperature[J]. Int J Ther Sci, 2007, 46(8): 790-801. doi: 10.1016/j.ijthermalsci.2006.10.009
    [12] Hossain M A, Rashid R I M A. Hall effects on hydromagnetic free convection flow along a porous flat plate with mass transfer[J]. J Phys Soc Japan, 1987, 56(1): 97-104. doi: 10.1143/JPSJ.56.97
    [13] Siddiqa S, Asghar S, Hossain M A. Natural convection flow over an inclined flat plate with internal heat generation and variable viscosity[J]. Math and Comp Model, 2010, 52(9/10): 1739-1751. doi: 10.1016/j.mcm.2010.07.001
    [14] Minkowycz W J, Sparrow E M. Numerical solution scheme for local nonsimilarity boundary layer analysis[J]. Numerical Heat Trans, 1978, 1(1/3):69-85.
    [15] Chen T S. Parabolic system: local nonsimilarity method[C]Minkowycz W J, Sparrow E M, Schneider G E, Pletcher R H. Handbook of Numerical Heat Transfer. New York: Wiley, 1988.
    [16] Nachtsheim P R, Swigert P. Satisfaction of the asymptotic boundary conditions in numerical solution of the system of nonlinear equations of boundary layer type[A]. NASA TND-3004, 1965.
    [17] Butcher J C. Implicit Runge-Kutta process[J]. Math Comp, 1964,18(85): 50-55. doi: 10.1090/S0025-5718-1964-0159424-9
    [18] Wilks G, Hunt R. Magnetohydrodynamic free convection flow about a semi-infinite plate at whose surface the heat flux is uniform[J]. ZAMP, 1984, 35(1): 34-49. doi: 10.1007/BF00945174
  • 加载中
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  77
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-17
  • 修回日期:  2011-05-30
  • 刊出日期:  2011-09-15

目录

    /

    返回文章
    返回