留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维矩形槽道中颗粒沉降的数值模拟

刘马林

刘马林. 三维矩形槽道中颗粒沉降的数值模拟[J]. 应用数学和力学, 2011, 32(9): 1071-1083. doi: 10.3879/j.issn.1000-0887.2011.09.006
引用本文: 刘马林. 三维矩形槽道中颗粒沉降的数值模拟[J]. 应用数学和力学, 2011, 32(9): 1071-1083. doi: 10.3879/j.issn.1000-0887.2011.09.006
LIU Ma-lin. Numerical Simulation of Particle Sedimentation in a 3D Rectangular Channel[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1071-1083. doi: 10.3879/j.issn.1000-0887.2011.09.006
Citation: LIU Ma-lin. Numerical Simulation of Particle Sedimentation in a 3D Rectangular Channel[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1071-1083. doi: 10.3879/j.issn.1000-0887.2011.09.006

三维矩形槽道中颗粒沉降的数值模拟

doi: 10.3879/j.issn.1000-0887.2011.09.006
基金项目: 国家科技重大专项基金资助项目(ZX06901)
详细信息
    作者简介:

    刘马林(1983- ),男,安徽人,助理研究员,博士(Tel:+86-10-89796092;E-mail:liumalin@tsinghua.edu.cn).

  • 中图分类号: O311.2; O313.7

Numerical Simulation of Particle Sedimentation in a 3D Rectangular Channel

  • 摘要: 采用三维格子Boltzmann方法对矩形通道中的颗粒沉降进行了模拟研究.单颗粒沉降的模拟结果表明,颗粒最终的稳定沉降位置沿槽道中心线,不受颗粒初始位置和直径的影响.颗粒和壁面之间的两体相互效应可以用无因次沉降速度定量描述,无因次沉降速度的模拟结果和实验结果定量上吻合一致.模拟分析了双颗粒沉降的DKT(drafting, kissing and tumbling)过程,探讨了颗粒直径比以及壁面效应对DKT过程的影响.模拟发现当颗粒直径相同时,双颗粒的沉降过程为周期性的DKT过程,从而形成双螺旋形式的沉降轨迹,此螺旋沉降轨迹的频率和振幅受颗粒初始位置影响.从模拟结果中还得到颗粒群的最终稳定构型,并进行了构型对比分析.最后对包含49个颗粒的颗粒群沉降行为进行了模拟,说明多体相互作用在对称性的情况下可以简化.
  • [1] Shinbrot T. The brazil nut effect—in reverse[J]. Nature, 2004, 429(6990): 352-353.
    [2] Mobius M E, Lauderdale B E, Nagel S R, Jaeger H M. Size separation of granular particles[J]. Nature, 2001, 414(6861): 270. doi: 10.1038/35104697
    [3] 邵雪明,刘杨,余钊圣. 不同大小颗粒之间相互作用的直接数值模拟[J].应用数学和力学, 2005, 26(3):372-378.(SHAO Xue-ming, LIU Yang, YU Zhao-sheng. Interactions between two sedimenting particles with different sizes[J]. Applied Mathematics and Mechanics(English Edition), 2005, 26(3): 407-414.)
    [4] Sun R, Chwang A T. Interactions between two touching spherical particles in sedimentation[J]. Physical Review E,2007, 76(4): 046316. doi: 10.1103/PhysRevE.76.046316
    [5] Subramanian G, Koch D L. Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions[J]. Journal of Fluid Mechanics, 2008, 603: 63-100.
    [6] Aidun C K, Ding E J. Dynamics of particle sedimentation in a vertical channel: period-doubling bifurcation and chaotic state[J]. Physics of Fluids, 2003, 15(6): 1612-1621. doi: 10.1063/1.1571825
    [7] Qi D W, Luo L S. Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows[J]. Journal of Fluid Mechanics, 2003, 477: 201-213.
    [8] Feng Z G, Michaelides E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. Journal of Computational Physics, 2004, 195(2): 602-628. doi: 10.1016/j.jcp.2003.10.013
    [9] Niu X D, Shu C, Chew Y T, Peng Y. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J]. Physics Letters A, 2006, 354(3): 173-182. doi: 10.1016/j.physleta.2006.01.060
    [10] Singh P, Joseph D D. Sedimentation of a sphere near a vertical wall in an Oldroyd-B fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 94(2): 179-203. doi: 10.1016/S0377-0257(00)00157-9
    [11] Feng J, Hu H H, Joseph D D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid—part 1:sedimentation[J]. Journal of Fluid Mechanics, 1994, 261: 95-134. doi: 10.1017/S0022112094000285
    [12] Patankar N A, Singh P, Joseph D D, Glowinski R, Pan T W. New formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows[J]. International Journal of Multiphase Flow, 2000, 26(9): 1509-1524. doi: 10.1016/S0301-9322(99)00100-7
    [13] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation—part 1:theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271: 285-309. doi: 10.1017/S0022112094001771
    [14] Feng Z G, Michaelides E E. Proteus: a direct forcing method in the simulations of particulate flows[J]. Journal of Computational Physics, 2005, 202(1): 20-51. doi: 10.1016/j.jcp.2004.06.020
    [15] Wu J, Shu C. Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme[J]. Communications in Computational Physics, 2010, 7(4): 793-812.
    [16] Ladd A J C, Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics, 2001, 104(5/6): 1191-1251. doi: 10.1023/A:1010414013942
    [17] Nguyen N Q, Ladd A J C. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions[J]. Physical Review E, 2002, 66(4): 046708. doi: 10.1103/PhysRevE.66.046708
    [18] Singh P, Joseph D D, Hesla T I, Glowinski R, Pan T W. Distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 91(2): 165-188. doi: 10.1016/S0377-0257(99)00104-4
    [19] Vasseur P, Cox R G. The lateral migration of a spherical particles sedimenting in a stagnant bounded fluid[J]. Journal of Fluid Mechanics, 1977, 80: 561-591. doi: 10.1017/S0022112077001840
    [20] Miyamura A, Iwasaki S, Ishii T. Experimental wall correction factors of singile solid spheres in triangular and square cylinders, and parellel plates[J]. International Journal of Multiphase Flow, 1981, 7(1): 41. doi: 10.1016/0301-9322(81)90013-6
    [21] 王叶龙. 相互碰撞的圆离子在竖直通道中沉降的数值研究[J]. 应用数学和力学, 2006, 27(7):859-866.(WANG YE-Long. Simulation of sedimentation of two circular particles with collision considered in vertical channel[J]. Applied Mathematics and Mechanics(English Edition), 2006, 27(7): 983-991.)
    [22] Vanroyen C, Omari A, Toutain J, Reungoat D. Interactions between hard spheres sedimenting at low Reynolds number[J]. European Journal of Mechanics, B/Fluids, 2005, 24(5): 586-595. doi: 10.1016/j.euromechflu.2005.01.002
  • 加载中
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  29
  • PDF下载量:  1072
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-24
  • 修回日期:  2011-06-14
  • 刊出日期:  2011-09-15

目录

    /

    返回文章
    返回