留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类不连续时滞系统的一致最终有界性

慕小武 丁志帅 程桂芳

慕小武, 丁志帅, 程桂芳. 一类不连续时滞系统的一致最终有界性[J]. 应用数学和力学, 2011, 32(9): 1110-1117. doi: 10.3879/j.issn.1000-0887.2011.09.010
引用本文: 慕小武, 丁志帅, 程桂芳. 一类不连续时滞系统的一致最终有界性[J]. 应用数学和力学, 2011, 32(9): 1110-1117. doi: 10.3879/j.issn.1000-0887.2011.09.010
MU Xiao-wu, DING Zhi-shuai, CHENG Gui-fang. Uniformly Ultimate Boundedness for a Class of Discontinuous Systems With Time-Delays[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1110-1117. doi: 10.3879/j.issn.1000-0887.2011.09.010
Citation: MU Xiao-wu, DING Zhi-shuai, CHENG Gui-fang. Uniformly Ultimate Boundedness for a Class of Discontinuous Systems With Time-Delays[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1110-1117. doi: 10.3879/j.issn.1000-0887.2011.09.010

一类不连续时滞系统的一致最终有界性

doi: 10.3879/j.issn.1000-0887.2011.09.010
基金项目: 国家自然科学基金资助项目(60874006)
详细信息
    作者简介:

    慕小武(1963- ),男,河南温县人,教授,博士(E-mail:muxiaowu@zzu.edu.cn);程桂芳(1979- ),女,河南温县人,副教授,博士(联系人.E-mail:gfcheng@zzu.edu.cn).

  • 中图分类号: O231.2

Uniformly Ultimate Boundedness for a Class of Discontinuous Systems With Time-Delays

  • 摘要: 主要讨论不连续的时滞自治系统,在Filippov解意义下的一致最终有界性问题.基于Lyapunov-Krasovskii泛函给出了全局强一致最终有界的Lyapunov定理,并将其应用到一类带有不连续摩擦项的时滞力学系统.
  • [1] Matrosov V M. On the stability of motion[J]. J Appl Math Mech, 1962, 26(5): 1337-1353. doi: 10.1016/0021-8928(62)90010-2
    [2] Filippov A F. Differential equations with discontinuous right-hand side[J]. Amer Math Soc Translations, 1964, 42(2): 199-231.
    [3] Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems[J]. IEEE Transactions on Automatic Control, 1994, 39(9): 1910-1914. doi: 10.1109/9.317122
    [4] Ceragioli F. Discontinuous ordinary differential equations and stabilization[D]. Firenze: Dipartmento di Matematica, Universita Degli Studi, 1999.
    [5] Bacciotti A, Ceragioli F. Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions[J]. Esaim Control, Optimisation and Calculus of Variations, 1999, 4: 361-376. doi: 10.1051/cocv:1999113
    [6] Loria A, Panteley E. Nijmeijer H. A remark on passivity-based and discontinuous control of uncertain nonlinear systems [J]. Automatica, 2001, 37(9): 1481-1487. doi: 10.1016/S0005-1098(01)00097-8
    [7] 郭兴明,罗辉. 一类具有不连续非线性项的微分包含[J]. 上海大学学报(自然科学版), 2000, 6(4): 291-297.(GUO Xing-ming, LUO Hui. Differential inclusions with discontinuous nonlinear items[J]. Journal of Shanghai University (Natural Science), 2000, 6(4): 291-297.(in Chinese))
    [8] Nakakuki T, Shen T L, Tamura K. Robust tracking control for robot systems with discontinuous uncertainty: an approach based on Filippov’s framework[J]. Electrical Engineering in Japan, 2008, 164(4): 463-470.
    [9] Zhang J Y, Shen T L, Jiao X H. Stability and feedback design of a class of time-delay systems with discontinuity:functional differential inclusion-based approach[J]. IEE J Trans EIS, 2009, 129(6): 1108-1114. doi: 10.1541/ieejeiss.129.1108
    [10] Zhang J Y, Shen T L, and Jiao X H. Functional differential inclusion-based approach to control of discontinuous nonlinear systems with time delay[C]Proceedings of IEEE Conference on Decision and Control, 2008: 5300-5305.
    [11] Zhang J Y, Shen T L, Jiao X H. L2-gain analysis and feedback design for discontinuous time-delay systems based on functional differential inclusion[C]Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 2009: 5114-5119.
    [12] Khalil H K. Nonlinear Systems[M]. 3rd Edition. New Jewsy: Prentice Hall, 2002.
    [13] Peuteman J, Aeyels D, Sepulchre R. Boundedness properties for time-varying nonlinear systems[J]. Siam Journal on Control and Optimization, 2000, 39(5): 3408-3422.
    [14] 卜春霞, 慕小武. 一类时变非线性系统的一致有界性的注记[J]. 数学的实践与认识, 2004, 34(6): 138-142.(BU Chun-xia, MU Xiao-wu. A note for uniform boundedness of a class of time-varying nonlinear systems[J]. Mathematics in Practice and Theory, 2004, 34(6): 138-142. (in Chinese))
    [15] 程桂芳, 慕小武, 丁志帅. 一类不连续非自治系统的一致最终有界性[J]. 应用数学学报, 2007, 30(4): 675-681.(CHENG Gui-fang, MU Xiao-wu, DING Zhi-shuai. Uniformly ultimate boundedness for a class of discontinuous nonautonomous systems[J]. Acta Mathematica Applicatae Sinica, 2007, 30(4): 675-681. (in Chinese))
    [16] Clarke F H, Ledyaev Y S, Stern R J, Wolenski P R. Nonsmooth Analysis and Control Theory[M]. Graduate Texts in Mathematics, New York: Springer, 1998.
    [17] Filippov A F. Differential Equations With Discontinuous Right-Hand Sides[M]. Netherlands: Dordrecht, Kluwer, 1988.
  • 加载中
计量
  • 文章访问数:  1289
  • HTML全文浏览量:  14
  • PDF下载量:  834
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-13
  • 修回日期:  2011-06-15
  • 刊出日期:  2011-09-15

目录

    /

    返回文章
    返回