留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二阶流体在旋转坐标系中的三维管道流动

S·侯斯纳因 A·梅姆德 A·阿里

S·侯斯纳因, A·梅姆德, A·阿里. 二阶流体在旋转坐标系中的三维管道流动[J]. 应用数学和力学, 2012, 33(3): 280-291. doi: 10.3879/j.issn.1000-0887.2012.03.002
引用本文: S·侯斯纳因, A·梅姆德, A·阿里. 二阶流体在旋转坐标系中的三维管道流动[J]. 应用数学和力学, 2012, 33(3): 280-291. doi: 10.3879/j.issn.1000-0887.2012.03.002
Saira Hussnain, Ahmer Mehmood, Asif Ali. Three Dimensional Channel Flow of Second Grade Fluid in a Rotating Frame[J]. Applied Mathematics and Mechanics, 2012, 33(3): 280-291. doi: 10.3879/j.issn.1000-0887.2012.03.002
Citation: Saira Hussnain, Ahmer Mehmood, Asif Ali. Three Dimensional Channel Flow of Second Grade Fluid in a Rotating Frame[J]. Applied Mathematics and Mechanics, 2012, 33(3): 280-291. doi: 10.3879/j.issn.1000-0887.2012.03.002

二阶流体在旋转坐标系中的三维管道流动

doi: 10.3879/j.issn.1000-0887.2012.03.002
详细信息
  • 中图分类号: O357.1;O361.3

Three Dimensional Channel Flow of Second Grade Fluid in a Rotating Frame

  • 摘要: 就两个水平板构成的旋转系统,在磁场作用下分析二阶磁流体在其间的流动.下表面是一块可伸展的平面,上面是一块多孔的固体平板.选用合适的变换,将质量和动量的守恒方程,简化为耦合的非线性常微分方程组.应用最强大的分析技术, 即同伦分析法(HAM), 得到该非线性耦合方程组的级数解. 结果用图形给出, 并详细地讨论了无量纲参数Re, λ, Ha2, αK2对速度场的影响.
  • [1] Crane L J. Flow past a stretching sheet[J]. Zeitschrift für Angewandte Mathematik und Physik, 1970, 21(4): 645-647.
    [2] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. The Canadian Journal of Chemical Engineering, 1977, 55(6): 744-746.
    [3] Chen C K, Char M I. Heat transfer of a continuous stretching surface with suction or blowing[J]. Journal of Mathematical Analysis and Applications, 1988, 135(2): 568-580.
    [4] Grubka L J, Bobba K M. Heat transfer characteristics of a continuous stretching surface with variable temperature[J]. ASME Journal of Heat Transfer, 1985, 107(1): 248-250.
    [5] Chiam T C. Magnetohydrodynamic heat transfer over a non-isothermal stretching sheet[J]. Acta Mechanica, 1997, 122(1/4): 169-179.
    [6] Chakrabarti A, Gupta A S. Hydromagnetic flow and heat transfer over a stretching sheet[J]. Quarterly of Applied Mathematics, 1979, 37(1): 73-78.
    [7] Ali M E. Heat transfer characteristics of a continuous stretching surface[J]. Warme-und Stoffubertragung, 1994, 29(4): 227-234.
    [8] Dutta B K. Heat transfer from stretching sheet with uniform suction and blowing[J]. Acta Mechanica, 1989, 78(3/4): 255-262.
    [9] Hassanien I A, Gorla R S R. Heat transfer to micropolar fluid from a non-isothermal stretching sheet with suction and blowing[J]. Acta Mechanica, 1990, 84(1/4): 191-199.
    [10] Elbashbeshy E M A. Heat transfer over a stretching surface with variable surface heat flux[J]. Journal of Physics D: Applied Physics, 1998, 31(16): 1951-1954.
    [11] Xu Q W, Bao W M, Mao R L, Yang G L, Pop I, Na T Y. Unsteady flow past a stretching sheet[J]. Mechanics Research Communications, 1996, 23(4): 413-422.
    [12] Mehmood A, Ali A. Takhar H S, Shah T. Corrigendum to: “Unsteady three dimensional MHD boundary layer flow due to the impulsive motion of a stretching surface (Acta Mechanica, 146(1), 59-71 (2001))” [J]. Acta Mechanica, 2008, 199(1/4): 241-249.
    [13] Mehmood A, Ali A, Shah T. Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method[J]. Communcations in Non-Linear Science and Numerical Simulation, 2008, 13(5): 902-912.
    [14] Devi C D S, Thakhar H S, Nath G. Unsteady three dimensional boundary layer flow due to a stretching surface[J]. International Journal of Heat Mass Transfer, 1986, 29(12): 1996-1999.
    [15] Elbashbeshy E M A, Bazid M A A. Heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection[J]. Applied Mathematics and Computation, 2004, 158(3): 799-807.
    [16] Troy W C, Overman E A, Ermentrout G B, Keener J P. Uniqueness of flow of a second-order fluid past a stretching sheet[J]. Quarterly of Applied Mathematics, 1987, 44(4): 753-755.
    [17] Rao B N. Flow of a fluid of second grade over a stretching sheet[J]. International Journal of Non-Linear Mechanics, 1996, 31(4): 547-550.
    [18] Chang W D, Kazarinoff N D, Lu C. A new family of explicit solutions for the similarity equations modelling flow of a non-Newtonian fluid over a stretching sheet[J]. Archive for Rational Mechanics and Analysis, 1991, 113(2): 191-195.
    [19] Pontrelli G. Flow of a fluid of second grade over a stretching sheet[J]. International Journal of Non-Linear Mechanics, 1995, 30(3): 287-293.
    [20] Mehmood A, Ali A. An explicit analytic solution of steady three-dimensional stagnation point flow of second grade fluid toward a heated plate[J]. ASME Journal of Applied Mechanics, 2008, 75(6): 061003.
    [21] Ariel P D. A numerical algorithm for computing the stagnation point flow of a second grade fluid with/without suction[J]. Journal of Computational and Applied Mathematics, 1995, 59(1): 9-24.
    [22] Vajravelu K, Roper T. Flow and heat transfer in a second grade fluid over a stretching sheet[J]. International Journal of Non-Linear Mechanics, 1999, 34(6): 1031-1036.
    [23] Baris S, Dokuz M S. Three dimensional stagnation point flow of a second grade fluid towards a moving plate[J]. International Journal of Engineering Science, 2006, 44(1/2): 49-58.
    [24] Ferrario C, Passerini A, Thater G. Generalization of the Lorenz model to the two dimensional convection of second grade fluid[J]. International Journal of Non-Linear Mechanics, 2004, 39(4): 581-591.
    [25] Xu H, Liao S J. Series solutions of unsteady Magnetohydrodynamics flows of non-Newtonian fluids caused by an impulsively stretching plate[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 129(1): 46-55.
    [26] Huilgol R R, Keller H B. Flow of viscoelastic fluids between rotating disks: part I[J]. Journal of Non-Newtonian Fluid Mechanics, 1985, 18(1): 101-110.
    [27] Huilgol R R, Rajagopal K R. Non-axisymmetric flow of a viscoelastic fluid between rotating disks[J]. Journal of Non-Newtonian Fluid Mechanics, 1987, 23: 423-434.
    [28] Vajravelu K. Analytical and numerical solutions of a coupled non-linear system arising in a three-dimensional rotating flow[J]. International Journal of Non-Linear Mechanics, 2004, 39(1): 13-24.
    [29] Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Methods[M]. Boca Raton: Chapman & Hall/CRC Press, 2003.
    [30] Hilton P H. An Introduction to Homotopy Theory[M]. Cambridge: Cambridge University Press, 1953.
    [31] Sen S. Topology and Geometry for Physicists[M]. Florida: Academic Press, 1983.
    [32] Yang C, Liao S J. On the explicit, purely analytic solution of von Karman swirling viscous flow[J]. Communcations in Non-Linear Science and Numerical Simulation, 2006, 11(1): 83-93.
    [33] Abbasbandy S. Homotopy analysis method for heat radiation equations[J]. International Communications in Heat and Mass Transfer, 2007, 34(3): 380-387.
    [34] Ziabaksh Z, Domairy G. Solution of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field by using the homotopy analysis method[J]. Communcations in Non-Linear Science and Numerical Simulation, 2009, 14(4): 1284-1294.
    [35] Liao S J. A uniformly valid analytic solution of 2D viscous flow past a semi infinite flat plate[J]. Journal of Fluid Mechanics, 1999, 385: 101-128.
    [36] Liao S J, Cheung K F. Homotopy analysis of nonlinear progressive waves in deep water[J]. Journal of Engineering Mathematics, 2003, 45(2): 105-116.
    [37] Xu H, Liao S J. An explicit analytic solution for convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream[J]. International Journal of Engineering Science, 2005, 43(10): 859-874.
    [38] Liao S J. On the analytic solution of magnetohydrodynamic flow of non-Newtonian fluids over a stretching sheet[J]. Journal of Fluid Mechanics, 2003, 488: 189-212.
    [39] Mehmood A, Ali A. Analytic solution of generalized three-dimensional flow and heat transfer over a stretching plane wall[J]. International Communications Heat and Mass Transfer, 2006, 33(10): 1243-1252.
    [40] Mehmood A, Ali, A. Analytic solution of three-dimensional viscous flow and heat transfer over a stretching flat surface by homotopy analysis method[J]. ASME-Journal of Heat Transfer, 2008, 130(12): 121701.
    [41] Liao S J. On the homotopy analysis method for nonlinear problems[J]. Applied Mathematics and Computation, 2004, 147(2): 499-513.
    [42] Liao S J. An approximate solution technique which does not depend upon small parameters—part 2: an application in fluid mechanics[J]. International Journal of Non-Linear Mechanics, 1997, 32(5): 815-822.
    [43] Shercliff J A. A Textbook of Magnetohydrodynamics[M]. Oxford: Pergamon Press, 1965.
    [44] Rivlin R S, Ericksen J L. Stress deformation relations for isotropic matherials[J]. Journal of Rational Mechanics and Analysis, 1955, 4(5
  • 加载中
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  21
  • PDF下载量:  912
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-18
  • 修回日期:  2011-12-05
  • 刊出日期:  2012-03-15

目录

    /

    返回文章
    返回