## 留言板

J·C·密斯拉, S·麦蒂. 流变学流体的蠕动传输：食道中食物块的运动模型[J]. 应用数学和力学, 2012, 33(3): 303-319. doi: 10.3879/j.issn.1000-0887.2012.03.004
 引用本文: J·C·密斯拉, S·麦蒂. 流变学流体的蠕动传输：食道中食物块的运动模型[J]. 应用数学和力学, 2012, 33(3): 303-319.
J.C.Misra, S.Maiti. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus[J]. Applied Mathematics and Mechanics, 2012, 33(3): 303-319. doi: 10.3879/j.issn.1000-0887.2012.03.004
 Citation: J.C.Misra, S.Maiti. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus[J]. Applied Mathematics and Mechanics, 2012, 33(3): 303-319.

## 流变学流体的蠕动传输：食道中食物块的运动模型

##### doi: 10.3879/j.issn.1000-0887.2012.03.004

• 中图分类号: O357.2;O361.3

## Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

• 摘要: 研究食道中蠕动传输的流体力学．对任意的波形和任意的管道长度，建立起流变学流体蠕动传输的数学模型．用粘性流体的Ostwald-deWaele幂定律，描述非Newton流体的流动特性．解析公式化模型，详细且精确地给出食物块在食道中蠕动传输相关的一些重要性质．分析中应用了润滑理论，本研究特别适合于Reynolds数不大的情况．将食道看作环形的管道，通过食道壁周期性的收缩来传输食物块．就单个波和周期性收缩一组波的传播，研究与传输过程有关变量的变化，如压力、流速、食物颗粒轨迹以及流量等．局部压力的变化，对流变指数n有着高度的敏感性．研究结果清晰地表明，食物块在食道中蠕动传输时，Newton流体或流变学流体构成的连续流体，以组合波传播比大间隔单波传播，传输效率要高得多．
•  [1] Misra J C, Pandey S K. Peristaltic transport of a non-Newtonian fluid with a peripheral layer[J].International Journal of Engineering Science, 1999, 37(14): 1841-1858. [2] Misra J C, Pandey S K. A mathematical model for esophageal swallowing of a food bolus[J]. Mathematical and Computer Modelling, 2001, 33(8/9): 997-1009. [3] Misra J C, Maiti S, Shit G C. Peristaltic transport of a physiological fluid in an asymmetric porous channel in the presence of an external magnetic field[J]. Journal of Mechanics in Medicine and Biology, 2008, 8(4): 507-525. [4] Maiti S, Misra J C. Peristaltic flow of a fluid in a porous channel: a study having relevance to flow of bile[J]. International Journal of Engineering Science, 2011, 49(9): 950-966. [5] Guyton A C,Hall J E. Text Book of Medical Physiology[M]. Elsevier: Saunders Co, 2006. [6] Jaffrin M Y, Shapiro A H. Peristaltic pumping[J]. Annual Review of Fluid Mechanics, 1971, 3 : 13-36. [7] S·纳丁, N·S·阿克巴. 感应磁场对竖直对称管道中Johnson-Segalman流体蠕动流的影响[J]. 应用数学和力学, 2010, 31(8): 924-933.(Nadeem S, Akbar N S. Effects of induced magnetic field on peristaltic flow of Johnson-Segalman fluid in a vertical symmetric channel[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(8): 969-978.) [8] T·哈亚特, M·贾佛德. 不对称柔性壁管道内幂律流体蠕动传输的精确解[J]. 应用数学和力学, 2010, 31(10): 1172-1182.(Hayat T, Javed M.Exact solution to peristaltic transport of power-law fluid in asymmetric channel with compliant walls[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(10):1231-1240.) [9] Brasseur J G. A flid mechanical perspective on esophageal bolus transport[J]. Dysphagia,1987, 2(1): 32-39. [10] Li M,Brasseur J G. Non-steady peristaltic transport in finite-length tubes[J]. Journal of Fluid Mechanics, 1993, 248: 129-151. [11] Patel P D, Picologlou B F,Lykoudis P S. Biorheological aspects of colonic activity—Ⅱ: experimental investigation of the rheological behaviour of human faeces[J]. Biorheology,1973, 10: 441-445. [12] Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena[M]. Singapore :John Wiley and Sons, 1960. [13] Jaffrin M Y. Inertia and streamline curvature on peristaltic pumping[J]. International Journal of Engineering Science,1973, 11(6): 681-699. [14] Dusey M. Numerical analysis of lubrication theory and peristaltic transport in the esophagus[D]. Ph D thesis.Pennsylvania: Pennsylvania State University, 1993. [15] Li M J, Brasseur J G, Dodds W J. Nonsteady model of peristaltic transport applied to swallowing[C]Bioengineering Conference, IEEE, CH2834-3/90/0000-0058, 1990. [16] Cheremisinoff N P. Encyclopedia of Fluid Mechanics, Rheology and Non-Newtonian Flows[M]. vol 7.Houston :Gulf Publishing Co, 1988.

##### 计量
• 文章访问数:  1243
• HTML全文浏览量:  35
• PDF下载量:  986
• 被引次数: 0
##### 出版历程
• 收稿日期:  2011-03-16
• 修回日期:  2011-12-06
• 刊出日期:  2012-03-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈