留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增龄对人牙本质失水收缩的重要性

汪饶饶 毛霜霜 依赖恩·隆伯格 德温·阿罗拉 张东升

汪饶饶, 毛霜霜, 依赖恩·隆伯格, 德温·阿罗拉, 张东升. 增龄对人牙本质失水收缩的重要性[J]. 应用数学和力学, 2012, 33(3): 320-331. doi: 10.3879/j.issn.1000-0887.2012.03.005
引用本文: 汪饶饶, 毛霜霜, 依赖恩·隆伯格, 德温·阿罗拉, 张东升. 增龄对人牙本质失水收缩的重要性[J]. 应用数学和力学, 2012, 33(3): 320-331. doi: 10.3879/j.issn.1000-0887.2012.03.005
WANG Rao-rao, MAO Shuang-shuang, Elaine Romberg, Dwayne Arola, ZHANG Dong-sheng. Importance of Aging to the Dehydration Shrinkage of Human Dentin[J]. Applied Mathematics and Mechanics, 2012, 33(3): 320-331. doi: 10.3879/j.issn.1000-0887.2012.03.005
Citation: WANG Rao-rao, MAO Shuang-shuang, Elaine Romberg, Dwayne Arola, ZHANG Dong-sheng. Importance of Aging to the Dehydration Shrinkage of Human Dentin[J]. Applied Mathematics and Mechanics, 2012, 33(3): 320-331. doi: 10.3879/j.issn.1000-0887.2012.03.005

增龄对人牙本质失水收缩的重要性

doi: 10.3879/j.issn.1000-0887.2012.03.005
基金项目: 国家自然科学基金资助项目(11172161);上海市重点学科建设基金资助项目(S30106);上海市教委重点基金资助项目(12ZZ092);口腔疾病研究国家重点实验室(四川大学)开放基金资助项目(SKLODSCU2009KF03);上海市科委基金资助项目(10410701900;11195820900;10ZR1423400);美国国立牙科和颅面研究基金资助项目(R01-DE016904)
详细信息
    通讯作者:

    汪饶饶(1959—), 男, 江西上饶人, 主任医师,博士(联系人.Tel:+86-21-66301726;Fax:+86-21-66301725;E-mail:raoraowang@hotmail.com).

  • 中图分类号: Q66;R780.2

Importance of Aging to the Dehydration Shrinkage of Human Dentin

  • 摘要: 牙本质内的矿物质随着年龄的增长呈现增长的趋势.由于矿物质与蛋白胶原比例的改变,可能导致牙本质脱水时氢键强度和收缩程度的变化.因此,该研究的目的是确定牙本质收缩随年龄增长的量变.将磨牙牙本质的冠部制成试件,青年组:23≤age≤34,老年组:52≤age≤62,贮存在水或Hanks平衡盐溶液(HBSS)中.利用数字图像相关法(DIC)观察牙本质试件在自由空气状态下的尺寸变化过程.结果表明青年人的牙本质不管在哪个方向或存储时间上,其收缩都明显大于老年人(p<0.01).平行于牙本质小管方向上的应变从牙髓腔侧到釉牙本质界(DEJ)侧依次递增,而垂直于牙本质小管方向的应变则依次递减.即从牙髓腔侧到DEJ牙本质收缩的各向异性增强,该现象在青年人牙本质中尤其明显.
  • [1] Ten Cate A R. Oral Histology: Development, Structure, and Function[M]. Seventh ed. St Louis: Mosby-Year Book Inc, 2008.
    [2] Kinney J H, Nalla R K, Pople J A, Breunig T M, Ritchie R O. Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties[J]. Biomaterials, 2005, 26(16): 3363-3376.
    [3] Porter A E, Nalla R K, Minor A, Jinschek J R, Kisielowski C, Radmilovic V, Kinney J H, Tomsia A P, Ritchie R O. A transmission electron microscopy study of mineralization in age-induced transparent dentin[J]. Biomaterials, 2005, 26(36): 7650-7660.
    [4] Walters C, Eyre D R. Collagen crosslinks in human dentin: increasing content of hydroxypyridinium residues with age[J]. Calcif Tissue Int, 1983, 35(4/5):401-405.
    [5] Ager J W, Nalla R K, Balooch G, Kim G, Pugach M, Habelitz S, Marshall G W, Kinney J H, Ritchie R O. On the increasing fragility of human teeth with age: a deep-UV resonance Raman study[J]. J Bone Miner Res, 2006, 21(12): 1879-1887.
    [6] Arola D. Fracture and aging in dentin. Curtis R, Watson T.Dental Biomaterials: Imaging, Testing and Modeling[M]. Cambridge, UK: Woodhead Publishing, 2007.
    [7] Arola D, Bajaj D, Ivancik J, Majd H, Zhang D. Fatigue of biomaterials: hard tissues[J]. International Journal of Fatigue, 2010, 32(9):1400-1412.
    [8] Arola D, Reprogel R. Effects of aging on the mechanical behavior of human dentin[J]. Biomaterials, 2005, 26(18): 4051-4061.
    [9] Bajaj D, Sundaram N, Nazari A, Arola D. Age, dehydration and fatigue crack growth in dentin[J]. Biomaterials, 2006, 27(11): 2507-2517.
    [10] Koester K J, Ager J W, Ritchie R O. The effect of aging on crack-growth resistance and toughening mechanisms in human dentin[J]. Biomaterials, 2008, 29(10): 1318-1328.
    [11] Nazari A, Bajaj D, Zhang D, Romberg E, Arola D. On the reduction in fracture toughness of human dentin with age[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(5): 550-559.
    [12] Goodis H E, Tao L, Pashley D H. Evaporative water loss from human dentine in vitro[J]. Arch Oral Biol, 1990, 35(7): 523-527.
    [13] Matthews W G, Showman C D, Pashley D H. Air blast-induced evaporative water loss from human dentine, in vitro[J]. Arch Oral Biol, 1993, 38(6): 517-523.
    [14] Van der Graaf E R, Ten Bosch J J. Changes in dimensions and weight of human dentine after different drying procedures and during subsequent rehydration[J]. Arch Oral Biol, 1993, 38(1): 97-99.
    [15] Kinney J H, Balooch M, Marshall G, Marshall S J. Atomic-force microscopic study of dimensional changes in human dentine during drying[J]. Arch Oral Biol, 1993, 38(11): 1003-1007.
    [16] Nakaoki Y, Nikaido T, Pereira P N R, Inokoshi S, Tagami J. Dimensional changes of demineralized dentin treated with HEMA primers[J]. Dent Mater, 2000, 16(6): 441-446.
    [17] Kishen A, Rafique A. Investigations on the dynamics of water in the macrostructural dentine[J]. J Biomed Opt, 2006, 11(5): 054018.
    [18] Wood J D, Wang R Z, Weiner S, Pashley D H. Mapping of tooth deformation caused by moisture change using moiré interferometry[J]. Dent Mater, 2003, 19(3): 159-166.
    [19] Wood J D, Sobolewski P, Thakur V, Arola D, Nazari A, Tay F R, Pashley D H. Measurement of microstrains across loaded resin-dentin interfaces using microscopic moiré interferometry[J]. Dent Mater, 2008, 24(7): 859-866.
    [20] Zhang D, Mao S, Lu C, Romberg E, Arola D. Dehydration and the dynamic dimensional changes within dentin and enamel[J]. Dent Mater, 2009, 25(7): 937-945.
    [21] Carrigan P J, Morse D R, Furst M L, Sinai I H. A scanning electron microscopic evaluation of human dentinal tubules according to age and location[J]. J Endod, 1984, 10(8): 359-363.
    [22] Garberoglio R, Brnnstrm M. Scanning electron microscopic investigation of human dentinal tubules[J]. Arch Oral Biol, 1976, 21(6): 355-362.
    [23] Pashley D H. Dentin: a dynamic substrate—a review[J]. Scanning Microsc, 1989, 3(1): 161-174.
    [24] Ryou H, Amin N, Ross A, Eidelman N, Wang D H, Romberg E, Arola D. Contributions of microstructure and chemical composition to the mechanical properties of dentin[J]. J Mater Sci Mater Med, 2011, 22(5):1127-1135.
    [25] Habelitz S, Marshall G W Jr, Balooch M, Marshall S J. Nanoindentation and storage of teeth[J]. J Biomech, 2002, 35(7): 995-998.
    [26] Zhang D, Eggleton C D, Arola D. Evaluating the mechanical behavior of arterial tissue using digital image correlation[J]. Exp Mech, 2002, 42(4): 409-416.
    [27] Zhang D, Arola D. Application of digital image correlation to biological tissues[J]. J Biomed Opt, 2004, 9(4): 691-699.
    [28] Weber D F. Human dentine sclerosis: a microradiographic survey[J]. Arch Oral Biol, 1974, 19(2): 163-169.
    [29] Vasiliadis L, Darlin A I, Levers B G. The histology of sclerotic human root dentine[J]. Arch Oral Biol, 1983, 28(8): 693-700.
    [30] Nalbandian J, Gonzales F, Sognnaes R F. Sclerotic age changes in root dentin of human teeth as observed by optical, electron, and X-ray microscopy[J]. J Dent Res, 1960, 39: 598-607.
    [31] Vasiliadis L, Darling A I, Levers B G. The amount and distribution of sclerotic human root dentine[J]. Arch Oral Biol, 1983, 28(7): 645-649.
    [32] Micheletti C M. Dental histology: study of aging processes in root dentine[J]. Boll Soc Ital Biol Sper, 1998, 74(3/4): 19-28.
    [33] Van der Graaf E R, Ten Bosch J J. The uptake of water by freeze-dried human dentin sections[J]. Arch Oral Biol, 1990, 35(9): 731-739.
    [34] Shokouhinejad N, Nekoofar M H, Iravani A, Kharrazifard M J, Dummer P M. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate[J]. J Endod, 2010, 36(5): 871-874.
    [35] Prati C, Chersoni S, Mongiorgi R, Montanari G, Pashley D H. Thickness and morphology of resin-infiltrated dentin layer in young, old, and sclerotic dentin[J]. Oper Dent, 1999, 24(2): 66-72.
    [36] Tay F R, Pashley D H. Resin bonding to cervical sclerotic dentin: a review[J]. J Dent, 2004, 32(3): 173-196.
    [37] Zaslansky P, Friesem A A, Weiner S. Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: insight into tooth function[J]. J Struct Biol, 2006, 153(2): 188-199.
    [38] Lopes M B, Sinhoreti M A, Gonini Júnior A, Consani S, McCabe J F. Comparative study of tubular diameter and quantity for human and bovine dentin at different depths[J]. Braz Dent J, 2009, 20(4): 279-283.
    [39] Arends J, Stokroos I, Jongebloed W G, Ruben J. The diameter of dentinal tubules in human coronal dentine after demineralization and air drying[J]. Caries Res, 1995, 29(2): 118-121.
  • 加载中
计量
  • 文章访问数:  1132
  • HTML全文浏览量:  26
  • PDF下载量:  780
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-23
  • 修回日期:  2012-01-13
  • 刊出日期:  2012-03-15

目录

    /

    返回文章
    返回