留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在连续的时间系统中不存在Shilnikov型混沌

Z·艾哈得基 J·C·斯普饶特

Z·艾哈得基, J·C·斯普饶特. 在连续的时间系统中不存在Shilnikov型混沌[J]. 应用数学和力学, 2012, 33(3): 353-356. doi: 10.3879/j.issn.1000-0887.2012.03.008
引用本文: Z·艾哈得基, J·C·斯普饶特. 在连续的时间系统中不存在Shilnikov型混沌[J]. 应用数学和力学, 2012, 33(3): 353-356. doi: 10.3879/j.issn.1000-0887.2012.03.008
Zeraoulia Elhadj, J.C.Sprott. On the Non-Existence of Shilnikov Chaos in Continuous-Time Systems[J]. Applied Mathematics and Mechanics, 2012, 33(3): 353-356. doi: 10.3879/j.issn.1000-0887.2012.03.008
Citation: Zeraoulia Elhadj, J.C.Sprott. On the Non-Existence of Shilnikov Chaos in Continuous-Time Systems[J]. Applied Mathematics and Mechanics, 2012, 33(3): 353-356. doi: 10.3879/j.issn.1000-0887.2012.03.008

在连续的时间系统中不存在Shilnikov型混沌

doi: 10.3879/j.issn.1000-0887.2012.03.008
详细信息
  • 中图分类号: O157.1

On the Non-Existence of Shilnikov Chaos in Continuous-Time Systems

  • 摘要: 在n维的、时间连续的光滑系统中,得到了不存在同宿轨道和异宿轨道的条件.基于此结论并用一个基本实例,推断出如下结论:在多项式常微分方程系统中,有着以不存在同宿轨道和异宿轨道为特征的第4类混沌.
  • [1] Aulbach B, Flockerzi D. The past in short hypercycles[J]. J Math Biol, 1989, 27(2): 223-231.
    [2] Balmforth N J. Solitary waves and homoclinic orbits[J]. Annual Review of Fluid Mechanics, 1995, 27: 335-373.
    [3] FENG Bei-ye. The heteroclinic cycle in the model of competition between n-species and its stability[J]. Acta Math Appl Sinica(English Series), 1998, 14(4): 404-413.
    [4] Shi’lnikov L P. A case of the existence of a countable number of periodic motions(point mapping proof of existence theorem showing neighborhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions)[J]. Translated by Puckette S. Sov Math, 1965, 6: 163-166.
    [5] Shi’lnikov L P. A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type[J]. Translated by Cezus F A. Math U S S R Shornik, 1970, 10(1): 91-102.
    [6] Kennedy J, Kocak S, Yorke J A. A chaos lemma[J]. Amer Math Monthly, 2001, 108(5): 411-423.
    [7] Silva C P. Shi’lnikov theorem—a tutorial[J]. IEEE Trans Circuits Syst-Ⅰ, 2003, 40(10): 675-682.
    [8] Zhou T, Tang Y, Chen G. Chen’s attractor exists[J]. Int J Bifur & Chaos, 2004, 14(9): 3167-3177.
    [9] Tucker W. The Lorenz attractor exists[J]. C R Acad Paris, Ser Ⅰ Math, 1999, 328(15): 1197-1202.
    [10] Lu J H, Chen G, Cheng D, Celikovsky S. Bridge the gap between the Lorenz system and the Chen system[J]. Int J Bifur & Chaos, 2002, 12(12): 2917-2926.
    [11] Zhou T, Chen G, Celikovsky S. Si’lnikov chaos in the generalized Lorenz canonical form of dynamical systems[J]. Nonlinear Dynamics, 2005, 39(4): 319-334.
    [12] Sparrow C. The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors[M]. New York: Springer-Verlag, 1982.
    [13] Cˇelikovsk S, Vanecˇěk A. Bilinear systems and chaos[J]. Kybernetika, 1994, 30(4): 403-424.
    [14] ZHOU Tian-shuo, CHEN Guang-rong. Classification of chaos in 3-D autonomous quadratic systems-Ⅰ: basic framework and methods[J]. Int J Bifur Chaos, 2006, 16(9): 2459-2479.
  • 加载中
计量
  • 文章访问数:  1166
  • HTML全文浏览量:  19
  • PDF下载量:  784
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-07
  • 修回日期:  2011-11-25
  • 刊出日期:  2012-03-15

目录

    /

    返回文章
    返回