留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性理论中上三角无穷维Hamilton算子根向量组的完备性

王华 阿拉坦仓 黄俊杰

王华, 阿拉坦仓, 黄俊杰. 弹性理论中上三角无穷维Hamilton算子根向量组的完备性[J]. 应用数学和力学, 2012, 33(3): 366-378. doi: 10.3879/j.issn.1000-0887.2012.03.010
引用本文: 王华, 阿拉坦仓, 黄俊杰. 弹性理论中上三角无穷维Hamilton算子根向量组的完备性[J]. 应用数学和力学, 2012, 33(3): 366-378. doi: 10.3879/j.issn.1000-0887.2012.03.010
WANG Hua, Alatancang, HUANG Jun-jie. Completeness of the System of Root Vectors of Upper Triangular Infinite Dimensional Hamiltonian Operators Appearing in Elasticity Theory[J]. Applied Mathematics and Mechanics, 2012, 33(3): 366-378. doi: 10.3879/j.issn.1000-0887.2012.03.010
Citation: WANG Hua, Alatancang, HUANG Jun-jie. Completeness of the System of Root Vectors of Upper Triangular Infinite Dimensional Hamiltonian Operators Appearing in Elasticity Theory[J]. Applied Mathematics and Mechanics, 2012, 33(3): 366-378. doi: 10.3879/j.issn.1000-0887.2012.03.010

弹性理论中上三角无穷维Hamilton算子根向量组的完备性

doi: 10.3879/j.issn.1000-0887.2012.03.010
基金项目: 国家自然科学基金资助项目(11061019;10962004;11101200;11026175);教育部“春晖计划”资助项目( Z2009-1-01010);内蒙古自治区自然科学基金资助项目(2010MS0110)
详细信息
    通讯作者:

    王华(1975—) ,女,内蒙古人,副教授,博士(E-mail: hjjwh@sina. com);阿拉坦仓(1963—) ,男,内蒙古人,教授,博士,博士生导师(联系人. E-mail: alatanca@imu.edu.cn).

  • 中图分类号: O175.3

Completeness of the System of Root Vectors of Upper Triangular Infinite Dimensional Hamiltonian Operators Appearing in Elasticity Theory

  • 摘要: 考虑弹性力学中一类上三角无穷维 Hamilton 算子.首先,给出此类Hamilton算子特征值的几何重数和代数指标,进而得到代数重数.其次,根据Hamilton算子特征值的代数重数确定其特征(根)向量组完备的形式,得到此类Hamilton算子特征(根)向量组的完备性是由内部算子特征向量组决定.最后,将所得结果应用到弹性力学问题中.
  • [1] 钟万勰. 分离变量法与哈密尔顿体系[J].计算结构力学及其应用, 1991, 8(3): 229-239.(ZHONG Wan-xie.Method of separation of variables and Hamiltonian system[J]. Computational Structural Mechanics and Applications, 1991, 8(3): 229-239.(in Chinese))
    [2] 钟万勰.弹性力学求解新体系[M].大连: 大连理工大学出版社, 1995.(ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity[M].Dalian: Dalian University of Technology Press, 1995.(in Chinese))
    [3] Liu Y M, Li R.Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach [J].Applied Mathematical Modelling, 2010, 34(4): 856-865.
    [4] 姚伟岸, 隋永枫. Reissner板弯曲的辛求解体系[J]. 应用数学和力学, 2004, 25(2): 159-165.(YAO Wei-an, SUI Yong-feng.Symplectic solution system for Reissner plate bending [J]. Applied Mathematics and Mechanics(English Edition), 2004, 25(2): 178-185.)
    [5] Zhou Z H, Wong K W, Xu X S, Leung A Y T. Natural vibration of circular and annular thin plates by Hamiltonian approach[J].Journal of Sound and Vibration, 2011, 330(5): 1005-1017.
    [6] Kurina G A.Invertibility of nonnegatively Hamiltonian operators in a Hilbert space[J]. Differential Equations, 2001, 37(6): 880-882.
    [7] Azizov T Ya, Dijksma A, Gridneva I V.On the boundedness of Hamiltonian operators[J].Proc American Math Soc, 2002, 131(2): 563-576.
    [8] Kurina G A, Martynenko G V.Reducibility of a class of operator functions to block-diagonal form[J]. Mathematical Notes, 2003, 74(5): 744-748.
    [9] 阿拉坦仓, 黄俊杰, 范小英.L2×L2中一类无穷维Hamilton算子的剩余谱[J].数学物理学报, 2005, 25(7): 1040-1045.(Alatancang, HUANG Jun-jie, FAN Xiao-ying.The residual spectrum for a class of infinite dimensional Hamiltonian operators in L2×L2[J].Acta Mathematica Scientia, 2005, 25(7): 1040-1045.(in Chinese))
    [10] Alatancang, Huang J J, Fan X Y.Structure of the spectrum for infinite dimensional Hamiltonian operators[J]. Science in China Series A: Mathematics, 2008, 51(5): 915-924.
    [11] 黄俊杰, 阿拉坦仓, 陈阿茹娜.一类无穷维Hamilton算子特征函数系的完备性[J].应用数学学报, 2008, 31(3): 457-466.(HUANG Jun-jie, Alatancang, CHEN A-ru-na.Completeness for the eigenfunction system of a class of infinite dimensional Hamiltonian operators[J].Acta Mathematicae Applicatae Sinica, Chinese Series, 2008, 31(3): 457-466.(in Chinese))
    [12] Wu D Y, Alatancang.Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator[J].Science in China Series A: Mathematics, 2009, 52(1): 173-180.
    [13] 王华, 阿拉坦仓, 黄俊杰.一类无穷维Hamilton算子根向量组的完备性[J].数学学报, 2011, 54(4): 541-552.(WANG Hua, Alatancang, HUANG Jun-jie.Completeness of root vector systems of a class of infinite-dimensional Hamiltonian operators[J].Acta Mathematica Sinica, Chinese Series, 2011, 54(4): 541-552.(in Chinese))
    [14] Huang J J, Alatancang, Wang H.Completeness of the system of eigenvectors of off-diagonal operator matrices and its applications in elasticity theory [J]. Chinese Physics B, 2010, 19(12): 120201.
    [15] Taylor A E .Theorems on ascent, descent, nullity and defect of linear operators [J]. Math Ann, 1966, 163: 18-49.
  • 加载中
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  21
  • PDF下载量:  913
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-04
  • 修回日期:  2011-12-22
  • 刊出日期:  2012-03-15

目录

    /

    返回文章
    返回