留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前后排列旋转圆柱体对流热交换的格子Boltzmann方法解

H·内玛蒂 M·法哈第 K·赛迪戈亥 M·M·皮柔兹 N·N·阿巴塔瑞

H·内玛蒂, M·法哈第, K·赛迪戈亥, M·M·皮柔兹, N·N·阿巴塔瑞. 前后排列旋转圆柱体对流热交换的格子Boltzmann方法解[J]. 应用数学和力学, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003
引用本文: H·内玛蒂, M·法哈第, K·赛迪戈亥, M·M·皮柔兹, N·N·阿巴塔瑞. 前后排列旋转圆柱体对流热交换的格子Boltzmann方法解[J]. 应用数学和力学, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003
Hasan Nemati, Mousa Farhadi, Kurosh Sedighi, Mohammad Mohammadi Pirouz, Nima Niksefat Abatari. Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003
Citation: Hasan Nemati, Mousa Farhadi, Kurosh Sedighi, Mohammad Mohammadi Pirouz, Nima Niksefat Abatari. Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003

前后排列旋转圆柱体对流热交换的格子Boltzmann方法解

doi: 10.3879/j.issn.1000-0887.2012.04.003
详细信息
  • 中图分类号: O357

Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method

  • 摘要: 用格子Boltzmann方法,数值研究流过前后排列两旋转圆柱体的二维层流.用二阶精度的速度场和温度场,数值化涉及运动的曲线边界.在Reynolds数为100,Prandtl数为0.71时,研究旋转速度比的变化和不同间距的影响.在4种不同间距(3, 1.5, 0.7, 0.2)下,研究旋转速度比的不同范围.结果表明,当间距取大数值时,第1个圆柱体的升力和阻力系数,与单个圆柱体相类似;对所有间距(除间距3以外),第2个圆柱体的升力系数,随着角速度的增加而减小,而阻力系数反而增加.圆柱体表面平均周期Nusselt数的结果表明,当两圆柱体间距小且角速度又低时,热传导是主要的传热机理,而当间距大且角速度又高时,对流是主要的传热机理.
  • [1] Nakamura H, Igarashi T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3 000 to 15 000[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 741-748.
    [2] 陆夕云, 凌国灿. 圆柱振荡绕流的三维不稳定性研究[J]. 应用数学和力学, 2003, 24 (7): 699-707. (LU Xi-yun, LING Guo-can. Three-dimensional instability of an oscillating viscous flow past a circular cylinder[J]. Applied Mathematics and Mechanics(English Edition), 2003, 24(7): 791-800.)
    [3] Mohammed H A, Salman Y K. Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder[J]. Applied Thermal Engineering, 2007, 27(8/9): 1522-1533.
    [4] Fetecau C, Akhtar W, Imran M A, Vieru D. On the oscillating motion of an Oldroyd-B fluid between two infinite circular cylinders[J]. Computers & Mathematics With Applications, 2010, 59(8): 2836-2845.
    [5] Coutanceau M, Menard C. Influence of rotation on the near-wake development behind an impulsively started circular cylinder[J]. Journal of Fluid Mechanics, 1985, 158: 399-466.
    [6] Sohankar A, Norberg C, Davidson L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds number[J]. Physics of Fluids, 1999, 11(2): 288-306.
    [7] Zdravkovich M M. Review of flow interference between two circular cylinders in various arrangements[J]. ASME Journal of Fluid Engineering, 1977, 99(4): 618-633.
    [8] Zdravkovich M M. Flow induced oscillations of two interfering circular cylinders[J]. Journal of Sound and Vibration, 1985, 101(4): 511-521.
    [9] Yoon H S, Chun H H, Kim J H, Park I L R. Flow characteristics of two rotating side-by-side circular cylinder[J]. Computers and Fluids, 2009, 38(2): 466-474.
    [10] Mittal S, Kumar V, Raghuvanshi A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids, 1997, 25(11): 1315-1344.
    [11] Meneghini J R, Saltara F, Siqueira C L R, Ferrari J A. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements[J]. Journal of Fluids and Structures, 2001, 15(2): 327-350.
    [12] Nemati H, Sedighi K, Farhadi M, Pirouz M M, Fattahi E. Numerical simulation of fluid flow around two rotating side by side circular cylinders by lattice Boltzmann method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(3/4): 83-94.
    [13] Nemati H, Farhadi M, Sedighi K, Fattahi E, Darzi A A R. Lattice Boltzmann simulation of nanofluid in lid-driven cavity[J]. International Communications in Heat and Mass Transfer, 2010, 37(10): 1528-1534.
    [14] Kareem W A, Izawa S, Xiong A K, Fukunishi Y. Lattice Boltzmann simulations of homogeneous isotropic turbulence[J]. Computers & Mathematics With Applications, 2009, 58(5): 1055-1061.
    [15] Lee K, Yu D, Girimaji S S. Lattice Boltzmann DNS of decaying compressible isotropic turbulence with temperature fluctuations[J]. International Journal of Computational Fluid Dynamics, 2006, 20(6): 401-413.
    [16] 许友生, 刘慈群, 俞慧丹. 多孔介质中两相驱离的格子Boltzmann模型新研究[J]. 应用数学和力学,2002, 23(4): 353-358. (XU You-sheng, LIU Ci-qun, YU Hui-dan. New studying of lattice Boltzmann method for two-phase driven in porous media[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(4): 387-393.)
    [17] Yiotis A G, Kainourgiakis M E, Kikkinides E S, Stubos A K. Application of the lattice-Boltzmann method to the modeling of population blob dynamics in 2D porous domains[J]. Computers & Mathematics With Applications, 2010, 59(7): 2315-2325.
    [18] Fattahi E, Farhadi M, Sedighi K. Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus[J]. International Journal of Thermal Science, 2010, 49(12): 2353-2362.
    [19] 李元,段雅丽,郭彦,刘儒勋. 层射流的格子Boltzmann方法的数值模拟[J]. 应用数学和力学,2009, 30 (4): 417-424. (LI Yuan, DUAN Ya-li, GUO Yan, LUI Ru-xun. Numerical simulation of laminar jet-forced flow using lattice Boltzmann method[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(4): 445-453.)
    [20] Premnath K N, Abraham J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow[J]. Journal of Computational Physics, 2007, 224(2): 539-559.
    [21] Yu D, Mei R, Luo L S, Shyy W. Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in Aerospace Sciences, 2003, 39(5): 329-367.
    [22] Guo Z, Shi B, Zheng C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4): 325-342.
    [23] Barrios G, Rechtman R, Rojas J, Tovar R. The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall[J]. Journal of Fluid Mechanics, 2005, 522: 91-100.
    [24] Mei R, Yu D, Shyy W, Luo L S. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, 2002, 65(4): 1/041203-14/041203.
    [25] Huang H B, Lee T S, Shu C. Thermal curved boundary treatment for the thermal lattice Boltzmann equation[J]. International Journal of Modern Physics C, 2006, 17(5): 631-643.
    [26] Yan Y Y, Zu Y Q. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach[J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2519-2536.
    [27] Huang H B, Lu X Y, Sukop M C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(5): 055001.
    [28] Lai H, Yan Y Y. The effect of choosing dependent variables and cell-face velocities on convergence of the SIMPLE algorithm using non-orthogonal grids[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2001, 11(6): 524-546.
    [29] Eckert E R G, Soehngen E. Distribution of heat transfer coefficients around circular cylinders in cross-flow at Reynolds numbers from 20 to 500[J]. Transaction of the ASME, 1952, 74(3): 343-347.
    [30] Teng S, Chen Y, Ohashi H. Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing with artificial compression scheme[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 112-121.
  • 加载中
计量
  • 文章访问数:  1638
  • HTML全文浏览量:  178
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-11
  • 修回日期:  2011-11-08
  • 刊出日期:  2012-04-15

目录

    /

    返回文章
    返回