## 留言板

H·内玛蒂, M·法哈第, K·赛迪戈亥, M·M·皮柔兹, N·N·阿巴塔瑞. 前后排列旋转圆柱体对流热交换的格子Boltzmann方法解[J]. 应用数学和力学, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003
 引用本文: H·内玛蒂, M·法哈第, K·赛迪戈亥, M·M·皮柔兹, N·N·阿巴塔瑞. 前后排列旋转圆柱体对流热交换的格子Boltzmann方法解[J]. 应用数学和力学, 2012, 33(4): 406-424.
Hasan Nemati, Mousa Farhadi, Kurosh Sedighi, Mohammad Mohammadi Pirouz, Nima Niksefat Abatari. Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003
 Citation: Hasan Nemati, Mousa Farhadi, Kurosh Sedighi, Mohammad Mohammadi Pirouz, Nima Niksefat Abatari. Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2012, 33(4): 406-424.

• 中图分类号: O357

## Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method

• 摘要: 用格子Boltzmann方法，数值研究流过前后排列两旋转圆柱体的二维层流．用二阶精度的速度场和温度场，数值化涉及运动的曲线边界．在Reynolds数为100，Prandtl数为0.71时，研究旋转速度比的变化和不同间距的影响．在4种不同间距(3, 1.5, 0.7, 0.2)下，研究旋转速度比的不同范围．结果表明，当间距取大数值时，第1个圆柱体的升力和阻力系数，与单个圆柱体相类似；对所有间距(除间距3以外)，第2个圆柱体的升力系数，随着角速度的增加而减小，而阻力系数反而增加．圆柱体表面平均周期Nusselt数的结果表明，当两圆柱体间距小且角速度又低时，热传导是主要的传热机理，而当间距大且角速度又高时，对流是主要的传热机理．
•  [1] Nakamura H, Igarashi T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3 000 to 15 000[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 741-748. [2] 陆夕云， 凌国灿. 圆柱振荡绕流的三维不稳定性研究[J]. 应用数学和力学， 2003, 24 (7): 699-707. (LU Xi-yun, LING Guo-can. Three-dimensional instability of an oscillating viscous flow past a circular cylinder[J]. Applied Mathematics and Mechanics(English Edition), 2003, 24(7): 791-800.) [3] Mohammed H A, Salman Y K. Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder[J]. Applied Thermal Engineering, 2007, 27(8/9): 1522-1533. [4] Fetecau C, Akhtar W, Imran M A, Vieru D. On the oscillating motion of an Oldroyd-B fluid between two infinite circular cylinders[J]. Computers & Mathematics With Applications, 2010, 59(8): 2836-2845. [5] Coutanceau M, Menard C. Influence of rotation on the near-wake development behind an impulsively started circular cylinder[J]. Journal of Fluid Mechanics, 1985, 158: 399-466. [6] Sohankar A, Norberg C, Davidson L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds number[J]. Physics of Fluids, 1999, 11(2): 288-306. [7] Zdravkovich M M. Review of flow interference between two circular cylinders in various arrangements[J]. ASME Journal of Fluid Engineering, 1977, 99(4): 618-633. [8] Zdravkovich M M. Flow induced oscillations of two interfering circular cylinders[J]. Journal of Sound and Vibration, 1985, 101(4): 511-521. [9] Yoon H S, Chun H H, Kim J H, Park I L R. Flow characteristics of two rotating side-by-side circular cylinder[J]. Computers and Fluids, 2009, 38(2): 466-474. [10] Mittal S, Kumar V, Raghuvanshi A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids, 1997, 25(11): 1315-1344. [11] Meneghini J R, Saltara F, Siqueira C L R, Ferrari J A. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements[J]. Journal of Fluids and Structures, 2001, 15(2): 327-350. [12] Nemati H, Sedighi K, Farhadi M, Pirouz M M, Fattahi E. Numerical simulation of fluid flow around two rotating side by side circular cylinders by lattice Boltzmann method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(3/4): 83-94. [13] Nemati H, Farhadi M, Sedighi K, Fattahi E, Darzi A A R. Lattice Boltzmann simulation of nanofluid in lid-driven cavity[J]. International Communications in Heat and Mass Transfer, 2010, 37(10): 1528-1534. [14] Kareem W A, Izawa S, Xiong A K, Fukunishi Y. Lattice Boltzmann simulations of homogeneous isotropic turbulence[J]. Computers & Mathematics With Applications, 2009, 58(5): 1055-1061. [15] Lee K, Yu D, Girimaji S S. Lattice Boltzmann DNS of decaying compressible isotropic turbulence with temperature fluctuations[J]. International Journal of Computational Fluid Dynamics, 2006, 20(6): 401-413. [16] 许友生, 刘慈群, 俞慧丹. 多孔介质中两相驱离的格子Boltzmann模型新研究[J]. 应用数学和力学，2002, 23(4): 353-358. (XU You-sheng, LIU Ci-qun, YU Hui-dan. New studying of lattice Boltzmann method for two-phase driven in porous media[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(4): 387-393.) [17] Yiotis A G, Kainourgiakis M E, Kikkinides E S, Stubos A K. Application of the lattice-Boltzmann method to the modeling of population blob dynamics in 2D porous domains[J]. Computers & Mathematics With Applications, 2010, 59(7): 2315-2325. [18] Fattahi E, Farhadi M, Sedighi K. Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus[J]. International Journal of Thermal Science, 2010, 49(12): 2353-2362. [19] 李元，段雅丽，郭彦，刘儒勋. 层射流的格子Boltzmann方法的数值模拟[J]. 应用数学和力学，2009, 30 (4): 417-424. (LI Yuan, DUAN Ya-li, GUO Yan, LUI Ru-xun. Numerical simulation of laminar jet-forced flow using lattice Boltzmann method[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(4): 445-453.) [20] Premnath K N, Abraham J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow[J]. Journal of Computational Physics, 2007, 224(2): 539-559. [21] Yu D, Mei R, Luo L S, Shyy W. Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in Aerospace Sciences, 2003, 39(5): 329-367. [22] Guo Z, Shi B, Zheng C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4): 325-342. [23] Barrios G, Rechtman R, Rojas J, Tovar R. The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall[J]. Journal of Fluid Mechanics, 2005, 522: 91-100. [24] Mei R, Yu D, Shyy W, Luo L S. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, 2002, 65(4): 1/041203-14/041203. [25] Huang H B, Lee T S, Shu C. Thermal curved boundary treatment for the thermal lattice Boltzmann equation[J]. International Journal of Modern Physics C, 2006, 17(5): 631-643. [26] Yan Y Y, Zu Y Q. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach[J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2519-2536. [27] Huang H B, Lu X Y, Sukop M C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(5): 055001. [28] Lai H, Yan Y Y. The effect of choosing dependent variables and cell-face velocities on convergence of the SIMPLE algorithm using non-orthogonal grids[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2001, 11(6): 524-546. [29] Eckert E R G, Soehngen E. Distribution of heat transfer coefficients around circular cylinders in cross-flow at Reynolds numbers from 20 to 500[J]. Transaction of the ASME, 1952, 74(3): 343-347. [30] Teng S, Chen Y, Ohashi H. Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing with artificial compression scheme[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 112-121.

##### 计量
• 文章访问数:  1638
• HTML全文浏览量:  178
• PDF下载量:  736
• 被引次数: 0
##### 出版历程
• 收稿日期:  2011-05-11
• 修回日期:  2011-11-08
• 刊出日期:  2012-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈